首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Connections between wide-field monocular and binocular movement detectors in the brain of a hawk moth
Authors:Thomas Collett
Institution:(1) School of Biological Sciences, University of Sussex, Brighton, Sussex
Abstract:Summary Recordings were made in the brain of Sphinx ligustri of pairs of directionally selective movement detectors, and the spike trains analysed with a computer for possible synaptic connections between two classes of movement detector. (1) Neurones with large binocular fields which arise in the medial protocerebrum and project to the medulla or lobula of one optic lobe, or to the ventral nerve cord. (2) Movement detectors which project from the lobula complex of one optic lobe to the opposite medial protocerebrum. The majority of the second group had back-to-front preferred directions over the ipsilateral eye, and of these many were weakly sensitive to stimuli to the opposite eye. The ipsilateral receptive field covered most of the eye.Optic lobe output cells with the appropriate preferred direction provide a powerful excitatory input to the binocular movement detectors centrifugal to the medulla. Each centrifugal movement detector probably receives excitatory inputs from no more than two optic lobe output cells with back-to-front preferred direction. The same set of optic lobe output neurones probably feeds several cells projecting to the medulla and lobula of both optic lobes, and, possibly, to the ventral nerve cord.Evidence was obtained that the optic lobe output cells themselves receive few excitatory inputs, and that therefore the receptive fields of their input cells are large.Two moving stimuli were presented in different areas of the receptive field. Movement through the null direction in one area inhibited the response to movement in the preferred direction in another area. This suppression was stronger in optic lobe output cells with front-to-back preferred direction than in units with back-to-front preferred direction. Thus the optic lobe output cells, or wide-field units feeding them, receive inhibitory inputs from wide-field units with the opposite preferred direction.Similar tests in which moving stimuli were presented to both eyes gave results indicating that the binocular centrifugal movement detectors may receive inhibitory inputs from movement detectors with back-to-front preferred direction. The possible functional significance of these inhibitory inputs is discussed.I am very greatful to F. A. Miles for helpful discussion and criticism. Financial support came from the U. K. Science Research Council.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号