Reconstitution of the energy-linked transhydrogenase activity in membranes from a mutant strain of Escherichia coli K12 lacking magnesium ion- or calcium ion-stimulated adenosine triphosphatase |
| |
Authors: | G. B. Cox F. Gibson L. M. McCann J. D. Butlin F. L. Crane |
| |
Affiliation: | Department of Biochemistry, John Curtin School of Medical Research, Australian National University, Canberra, A.C.T. 2601, Australia |
| |
Abstract: | 1. We have isolated a mutant of Escherichia coli K12 (strain AN295) that forms de-repressed amounts of Mg2+,Ca2+-stimulated adenosine triphosphatase. 2. The Mg2+,Ca2+-stimulated triphosphatase activity was separated from membrane preparations from strain AN295 by extraction with 5mm-Tris–HCl buffer containing EDTA and dithiothreitol, resulting in a loss of the ATP-dependent transhydrogenase activity. The non-energy-linked transhydrogenase activity remained in the membrane residue. 3. The solubilized Mg2+,Ca2+-stimulated adenosine triphosphatase activity from strain AN295 was partially purified by repeated gel filtration. The addition of the purified Mg2+,Ca2+-stimulated adenosine triphosphatase to the membrane residue from strain AN295 reactivated the ATP-dependent transhydrogenase activity. 4. Strain AN296, lacking Mg2+,Ca2+-stimulated adenosine triphosphatase activity, was derived by transducing the mutant allele, uncA401, into strain AN295. The ATP-dependent transhydrogenase activity was lost but the non-energy linked transhydrogenase was retained. 5. The ATP-dependent transhydrogenase activity in membrane preparations from strain AN296 (uncA−) could not be re-activated by the purified Mg2+,Ca2+-stimulated adenosine triphosphatase from strain AN295. However, after extraction by 5mm-Tris–HCl buffer containing EDTA and dithiothreitol, the ATP-dependent transhydrogenase activity could be re-activated by the addition of the purified Mg2+,Ca2+-stimulated adenosine triphosphatase from strain AN295 to the membrane residue from strain AN296 (uncA−). |
| |
Keywords: | |
|
|