首页 | 本学科首页   官方微博 | 高级检索  
     


Enzymatic properties of phosphatidylinositol-glycan-specific phospholipase C from rat liver and phosphatidylinositol-glycan-specific phospholipase D from rat serum.
Authors:S Stieger  S Diem  A Jakob  U Brodbeck
Affiliation:Institut für Biochemie und Molekularbiologie, Universit?t Bern, Switzerland.
Abstract:Using phosphatidylinositol-glycan (PtdIns-glycan) anchored acetylcholinesterase from bovine erythrocytes as substrate, we found PtdIns-glycan-anchor-degrading activity in rat liver and serum [corrected]. The hepatic enzyme was only soluble in detergents, whereas the serum enzyme occurs as soluble, slightly amphiphilic protein. Using 3-trifluoromethyl-3-(m- [125I]iodophenyl)diazirine-labelled acetylcholinesterase as substrate, we showed that the hepatic anchor-degrading enzyme had a cleavage specificity of a phospholipase C, whereas the serum enzyme was a phospholipase D. Both enzyme exhibited maximal activity in slightly acidic conditions and at low ionic strength. They had a high affinity for the PtdIns-glycan anchor of the substrate (Km = 0.1 microM and 0.16 microM, respectively). Both hepatic PtdIns-glycan-specific phospholipase C and serum PtdIns-glycan-specific phospholipase D gave a large increase in activity between 0.1-10 microM Ca2+, indicating that PtdIns-glycan-specific phospholipases are only marginally active at physiological intracellular Ca2+ concentrations. The enzymes were inhibited by heavy metal chelating agents such as 1,10-phenanthroline and 2,2'-bipyridyl but not by the corresponding Fe2+ complexes or non-chelating analogues, indicating that they both require a heavy metal ion for the expression of catalytic activity in addition to Ca2+. Another interesting property of PtdIns-glycan-specific phospholipases is their inactivation by bicarbonate and cyanate. The inactivation was time- and pH-dependent and could be reversed by dialysis. These observations are in agreement with a covalent modification of the enzymes by carbamoylation.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号