首页 | 本学科首页   官方微博 | 高级检索  
     


Temperate forest responses to carbon dioxide, temperature and nitrogen: a model analysis
Authors:J. H. M. THORNLEY  M. G. R. CANNELL
Affiliation:Institute of Terrestrial Ecology, Bush Estate, Penicuik, Midlothian EH26 0QB, UK
Abstract:The ITE Edinburgh Forest Model, which describes diurnal and seasonal changes in the pools and fluxes of C, N and water in a fully coupled forest–soil system, was parametrized to simulate a managed conifer plantation in upland Britain. The model was used to examine (i) the transient effects on forest growth of an IS92a scenario of increasing [CO2] and temperature over two future rotations, and (ii) the equilibrium (sustainable) effects of all combinations of increases in [CO2] from 350 to 550 and 750 μmol mol?1, mean annual temperature from 7.5 to 8.5 and 9.5°C and annual inputs of 20 or 40 kg N ha?1. Changes in underlying processes represented in the model were then used to explain the responses. Eight conclusions were supported by the model for this forest type and climate.
  • 1 Increasing temperatures above 3°C alone may cause forest decline owing to water stress.
  • 2 Elevated [CO2] can protect trees from water stress that they may otherwise suffer in response to increased temperature.
  • 3 In N-limiting conditions, elevated [CO2] can increase allocation to roots with little increase in leaf area, whereas in N-rich conditions elevated [CO2] may not increase allocation to roots and generally increases leaf area.
  • 4 Elevated [CO2] can decrease water use by forests in N-limited conditions and increase water use in N-rich conditions.
  • 5 Elevated [CO2] can increase forest productivity even in N-limiting conditions owing to increased N acquisition and use efficiency.
  • 6 Rising temperatures (along with rising [CO2]) may increase or decrease forest productivity depending on the supply of N and changes in water stress.
  • 7 Gaseous losses of N from the soil can increase or decrease in response to elevated [CO2] and temperature.
  • 8 Projected increases in [CO2] and temperature (IS92a) are likely to increase net ecosystem productivity and hence C sequestration in temperate forests.
Keywords:allocation    climate change    elevated CO2    forest    net primary productivity    nitrification    nitrogen supply    process-based ecosystem model    temperature
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号