首页 | 本学科首页   官方微博 | 高级检索  
     


Differential expression of genes involved in cGMP-dependent nitric oxide signaling in murine embryonic stem (ES) cells and ES cell-derived cardiomyocytes.
Authors:Joshua S Krumenacker  Shoji Katsuki  Alexander Kots  Ferid Murad
Affiliation:The Brown Foundation Institute of Molecular Medicine, University of Texas Houston Health Science Center, 77030, USA.
Abstract:Nitric oxide (NO) performs multiple physiological roles as a biological signaling molecule. The role of NO and cGMP signaling in embryonic stem (ES) cell-derived cardiomyocytes (CM) has been investigated but many questions remain. In this study, we examined the expression of the NO signaling pathway components nitric oxide synthase (NOS-1, 2, 3), soluble guanylyl cyclase (sGCalpha(1) and beta(1)) and protein kinase G (PKG) genes and sGC activity in murine ES cells subjected to differentiation by embryoid body (EB) formation. We found that in undifferentiated ES cells, NOS-1, NOS-3, and sGCbeta(1) were detected while NOS-2, sGCalpha(1), and PKG were very low or undetectable. When ES cells were subjected to differentiation, NOS-1 abruptly decreased within one day, NOS-2 mRNA became detectable after several days, and NOS-3 increased after 7-10 days. Levels of sGCalpha(1), sGCbeta(1), and PKG all increased gradually over a several day time course of differentiation in EB outgrowths. Analysis of sGC activity in cell lysates derived from undifferentiated ES cells revealed that NO could not stimulate cGMP. However, lysates from differentiated EB outgrowths produced abundant cGMP levels after NO stimulation. Purification of ES-cell derived CM revealed that mRNA expression of all the NOS isoforms was very low to absent while sGCalpha(1) and beta(1) subunit mRNAs were abundant and sGC-mediated cGMP production was apparent in this population of cells. These data suggest that cGMP-mediated NO signaling may play a minor role, if any, in undifferentiated ES cells but could be involved in the early differentiation events or physiological processes of ES cells or ES cell-derived lineages.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号