首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Rab3a interacting molecule (RIM) and the tethering of pre‐synaptic transmitter release site‐associated CaV2.2 calcium channels
Authors:Fiona K Wong  Elise F Stanley
Institution:Laboratory of Synaptic Transmission, Toronto Western Research Institute, Toronto Ontario, Canada
Abstract:Biochemical and physiological evidence suggest that pre‐synaptic calcium channels are attached to the transmitter release site within the active zone by a molecular tether. A recent study has proposed that ‘Rab3a Interacting Molecule’ (RIM) serves as the tether for CaV2.1 channels in mouse brain, based in part on biochemical co‐immunoprecipitation (co‐IP) using a monoclonal antibody, mRIM. We previously argued against this idea for CaV2.2 calcium channel at chick synapses based on experiments using a different anti‐RIM antibody, pRIM1,2: while staining for the two proteins co‐localized and co‐varied at the transmitter release face, consistent with an association, they failed to co‐IP from a synaptosome membrane lysate. RIM is, however, a family of proteins and we tested the possibility that the mRIM antibody used in the more recent study identifies a particular channel‐tethering variant. We find that co‐immunostaining with mRIM and anti‐CaV2.2 antibody neither co‐localized nor co‐varied at the transmitter release face and the two proteins did not co‐IP, arguing against a common protein complex and a key CaV2.2 scaffolding role for RIM at the active zone. The differing results might be reconciled, however, in a model where a RIM family member contributes to a protein bridge that anchors the pre‐fusion secretory vesicle to the calcium channel protein complex.
Keywords:active zone  calcium channel  particle web  pre‐synaptic  RIM1  transmitter release site
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号