首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Silica and nitrogen modulate physical defense against chewing insect herbivores in bioenergy crops Miscanthus x Giganteus and Panicum virgatum (Poaceae)
Authors:Nabity P D  Orpet R  Miresmailli S  Berenbaum M R  DeLucia E H
Institution:Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
Abstract:Feedstock crops selected for bioenergy production to date are almost exclusively perennial grasses because of favorable physiological traits that enhance growth, water use, and nutrient assimilation efficiency. Grasses, however, tend to rely primarily on physical defenses, such as silica, to deter herbivores. Silica impedes processing of feedstocks and introduces a trade-off between managing for cost efficiency (i.e., yield) and plant defenses. To test how silica modulates herbivory in two of the most preferred feedstock crops for production across the central United States, miscanthus (Miscanthus x giganteus Greef and Deuter ex Hodkinson and Renvoize) and switchgrass (Panicum virgatum L.), we examined the performance of two immature generalist insect herbivores, fall armyworm (Spodoptera frugiperda (J.E. Smith) and the American grasshopper Schistocerca americana (Drury)], on grasses grown under silica and nitrogen amendment. Both miscanthus and switchgrass assimilated nitrogen and silica when grown in amended soil that altered the consumption and conversion efficiency of herbivores consuming leaf tissue. The magnitude of nutrient assimilation, however, depended on intrinsic plant traits. Nitrogen increased conversion efficiency for both fall armyworm and American grasshopper but increased consumption rate only for fall armyworm. Silica reduced conversion efficiency and increased consumption rate only for the American grasshopper. Because of this variability, management strategies that reduce silica or increase nitrogen content in feedstock crops to enhance yields may directly influence the ability of bioenergy grasses to deter certain generalist herbivores.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号