首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Autophagy promotes fibrosis and apoptosis in the peritoneum during long‐term peritoneal dialysis
Authors:Li Zhang  Huijuan Mao  Xuguan Chen  Mingxing Liang  Fang Wang  Haibin Ren  Hongqing Cui  Aiqin Jiang  Zibin Wang  Meijuan Zou  Yong Ji
Institution:1. Department of Nephrology, First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China;2. Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China;3. Department of Cardiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China;4. Medical School of Nanjing University, Nanjing, China;5. Analytical & Testing Center, Nanjing Medical University, Nanjing, Jiangsu, China;6. Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, China
Abstract:Long‐term peritoneal dialysis is accompanied by functional and histopathological alterations in the peritoneal membrane. In the long process of peritoneal dialysis, high‐glucose peritoneal dialysis solution (HGPDS) will aggravate the peritoneal fibrosis, leading to decreased effectiveness of peritoneal dialysis and ultrafiltration failure. In this study, we found that the coincidence of elevated TGF‐β1 expression, autophagy, apoptosis and fibrosis in peritoneal membrane from patients with peritoneal dialysis. The peritoneal membranes from patients were performed with immunocytochemistry and transmission electron microscopy. Human peritoneal mesothelial cells were treated with 1.5%, 2.5% and 4.25% HGPDS for 24 hrs; Human peritoneal mesothelial cells pre‐treated with TGF‐β1 (10 ng/ml) or transfected with siRNA Beclin1 were treated with 4.25% HGPDS or vehicle for 24 hrs. We further detected the production of TGF‐β1, activation of TGF‐β1/Smad2/3 signalling, induction of autophagy, EMT, fibrosis and apoptosis. We also explored whether autophagy inhibition by siRNA targeting Beclin 1 reduces EMT, fibrosis and apoptosis in human peritoneal mesothelial cells. HGPDS increased TGF‐β1 production, activated TGF‐β1/Smad2/3 signalling and induced autophagy, fibrosis and apoptosis hallmarks in human peritoneal mesothelial cells; HGPDS‐induced Beclin 1‐dependent autophagy in human peritoneal mesothelial cells; Autophagy inhibition by siRNA Beclin 1 reduced EMT, fibrosis and apoptosis in human peritoneal mesothelial cells. Taken all together, these studies are expected to open a new avenue in the understanding of peritoneal fibrosis, which may guide us to explore the compounds targeting autophagy and achieve the therapeutic improvement of PD.
Keywords:high‐glucose peritoneal dialysis solution  Beclin 1‐dependent autophagy  fibrosis  apoptosis  human peritoneal mesothelial cells
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号