首页 | 本学科首页   官方微博 | 高级检索  
     


Comparative triplet-state properties of the three tryptophan residues in bacteriophage T4 lysozyme and in the enzyme complex with methylmercury(II)
Authors:L H Zang  S Ghosh  A H Maki
Affiliation:Department of Chemistry, University of California, Davis 95616.
Abstract:Triplet-state energies, zero-field splittings (ZFS), and total decay rate constants of the individual triplet-state sublevels of the tryptophan (Trp) residues located at positions 126, 138, and 158 in bacteriophage T4 lysozyme have been determined by using low-temperature phosphorescence and optical detection of magnetic resonance spectroscopy in zero applied magnetic field. An investigation of spectral and kinetic properties of individual Trp residues was facilitated by measurements on point-mutated proteins containing two Trp----Tyr substitutions. We find that the phosphorescence lifetime of the buried Trp-138 is considerably shorter than those of the solvent-exposed Trp residues. CH3HgII binding to cysteine residues in T4 lysozyme selectively perturbs the triplet state of Trp-158 by means of an external heavy-atom effect. In contrast with the previous observation of selective x-sublevel perturbation in the Trp-CH3Hg complex, the radiative character of the z sublevel (z is the out-of-plane axis) is selectively enhanced due to the heavy-atom perturbation of Trp-158. The observed pattern of radiative and total sublevel decay constants of the perturbed Trp is attributed to a special orientation of the Hg atom with respect to the indole plane.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号