首页 | 本学科首页   官方微博 | 高级检索  
     


Na+/Ca2+ exchange inhibition protects the rat heart from ischemia-reperfusion injury by blocking energy-wasting processes
Authors:Hagihara Hiroji  Yoshikawa Yoshiro  Ohga Yoshimi  Takenaka Chikako  Murata Ken-ya  Taniguchi Shigeki  Takaki Miyako
Affiliation:Dept. of Physiology II, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan.
Abstract:We have recently reported that exposure of rat hearts to high Ca(2+) produces a Ca(2+) overload-induced contractile failure in rat hearts, which was associated with proteolysis of alpha-fodrin. We hypothesized that contractile failure after ischemia-reperfusion (I/R) is similar to that after high Ca(2+) infusion. To test this hypothesis, we investigated left ventricular (LV) mechanical work and energetics in the cross-circulated rat hearts, which were subjected to 15 min global ischemia and 60 min reperfusion. Sixty minutes after I/R, mean systolic pressure-volume area (PVA; a total mechanical energy per beat) at midrange LV volume (mLVV) (PVA(mLVV)) was significantly decreased from 5.89 +/- 1.55 to 3.83 +/- 1.16 mmHg.ml.beat(-1).g(-1) (n = 6). Mean myocardial oxygen consumption per beat (Vo(2)) intercept of (Vo(2)-PVA linear relation was significantly decreased from 0.21 +/- 0.05 to 0.15 +/- 0.03 microl O(2).beat(-1).g(-1) without change in its slope. Initial 30-min reperfusion with a Na(+)/Ca(2+) exchanger (NCX) inhibitor KB-R7943 (KBR; 10 micromol/l) significantly reduced the decrease in mean PVA(mLVV) and Vo(2) intercept (n = 6). Although Vo(2) for the Ca(2+) handling was finally decreased, it transiently but significantly increased from the control for 10-15 min after I/R. This increase in Vo(2) for the Ca(2+) handling was completely blocked by KBR, suggesting an inhibition of reverse-mode NCX by KBR. alpha-Fodrin proteolysis, which was significantly increased after I/R, was also significantly reduced by KBR. Our study shows that the contractile failure after I/R is similar to that after high Ca(2+) infusion, although the contribution of reverse-mode NCX to the contractile failure is different. An inhibition of reverse-mode NCX during initial reperfusion protects the heart against reperfusion injury.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号