首页 | 本学科首页   官方微博 | 高级检索  
   检索      


A pericyte-derived angiopoietin-1 multimeric complex induces occludin gene expression in brain capillary endothelial cells through Tie-2 activation in vitro
Authors:Hori Satoko  Ohtsuki Sumio  Hosoya Ken-ichi  Nakashima Emi  Terasaki Tetsuya
Institution:Department of Molecular Biopharmacy and Genetics, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba-ku, Sendai, Japan.
Abstract:Although tight-junctions (TJs) at the blood-brain barrier (BBB) are important to prevent non-specific entry of compounds into the CNS, molecular mechanisms regulating TJ maintenance remain still unclear. The purpose of this study was therefore to identify molecules, which regulate occludin expression, derived from astrocytes and pericytes that ensheathe brain microvessels by using conditionally immortalized adult rat brain capillary endothelial (TR-BBB13), type II astrocyte (TR-AST4) and brain pericyte (TR-PCT1) cell lines. Transfilter co-culture with TR-AST4 cells, and exposure to conditioned medium of TR-AST4 cells (AST-CM) or TR-PCT1 cells (PCT-CM) increased occludin mRNA in TR-BBB13 cells. PCT-CM-induced occludin up-regulation was significantly inhibited by an angiopoietin-1-neutralizing antibody, whereas the up-regulation by AST-CM was not. Immunoprecipitation and western blot analyses confirmed that multimeric angiopoietin-1 is secreted from TR-PCT1 cells, and induces occludin mRNA, acting through tyrosine phosphorylation of Tie-2 in TR-BBB13 cells. A fractionated AST-CM study revealed that factors in the molecular weight range of 30-100 kDa led to occludin induction. Conversely, occludin mRNA was reduced by transforming growth factor beta 1, the mRNA of which was up-regulated in TR-AST4 cells following hypoxic treatment. In conclusion, in vitro BBB model studies revealed that the pericyte-derived multimeric angiopoietin-1/Tie-2 pathway induces occludin expression.
Keywords:astrocyte  blood–brain barrier  multimeric angiopoietin-1  occludin  pericyte  Tie-2
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号