Partitioning of peptide-tagged proteins in aqueous two-phase systems using hydrophobically modified micelle-forming thermoseparating polymer |
| |
Authors: | Nilsson Anna Johansson Hans-Olof Mannesse Maurice Egmond Maarten R Tjerneld Folke |
| |
Affiliation: | Department of Biochemistry, Chemical Center, Lund University, P.O. Box 124, S-221 00 Lund, Sweden. |
| |
Abstract: | Genetic engineering has been used to construct hydrophobically modified fusion proteins of cutinase from Fusarium solani pisi and tryptophan-containing peptides. The aim was to enhance the partitioning of the tagged protein in a novel aqueous two-phase system formed by only one water-soluble polymer. The system was based on a hydrophobically modified random copolymer of ethylene oxide (EO) and propylene oxide (PO) units, HM-EOPO, with myristyl groups (C(14)H(29)) at both ends. The HM-EOPO polymer is strongly self-associating and has a lower critical solution temperature (cloud point) at 12 degrees C in water. At temperatures above the cloud point a two-phase system is formed with a water top phase and a polymer-enriched bottom phase. By adding a few percent of hydroxypropyl starch polymer, Reppal PES 200, to the system, it is possible to change the densities of the phases so the HM-EOPO-enriched phase becomes the top phase and Reppal-enriched phase is the bottom phase. Tryptophan-based peptides strongly preferred the HM-EOPO rich phase. The partitioning was increased with increasing length of the peptides. Full effect of the tag as calculated from peptide partitioning data was not found in the protein partitioning. When a short spacer was introduced between the protein and the tag the partitioning was increased, indicating a better exposure to the hydrophobic core of the polymer micelle. By adding a hydrophilic spacer between the protein and trp-tag, it was possible to increase the partitioning of cutinase 10 times compared to wild-type cutinase partitioning. By lowering the pH of the system and addition of NaCl, the partitioning of tagged protein was further increased towards the HM-EOPO phase. After isolating the HM-EOPO phase, the temperature was increased and the protein was back-extracted from the HM-EOPO phase to a fresh water phase. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|