首页 | 本学科首页   官方微博 | 高级检索  
     


Hypothalamic mechanisms in thermoregulation
Authors:J A Boulant
Abstract:Certain preoptic and rostral hypothalamic neurons are sensitive to changes in local preoptic temperature (Tpo). These neurons also receive much afferent input from peripheral thermoreceptors and control a variety of thermoregulatory responses. In thermode-implanted animals, preoptic warming increases the firing rate in warm-sensitive neurons and elicits heat loss responses such as panting and sweating. Preoptic cooling increases the firing rate in cold-sensitive neurons and elicits, first, heat retention responses (e.g., cutaneous vasoconstriction and thermoregulatory behavior), then heat production responses (e.g., shivering and nonshivering thermogenesis). It is likely that the preoptic thermosensitive neurons control these thermoregulatory responses because both respond similarly to changes in Tpo and skin temperature. Specifically, skin warming not only increases panting, skin blood flow, and the firing rate of warm-sensitive neurons, but also decreases the sensitivity of all these responses to Tpo changes. Skin cooling not only increases metabolic heat production, heat retention behavior, and the firing rate of cold-sensitive neurons, but also increases the hypothalamic thermosensitivity of all these responses. Low-firing warm-sensitive neurons receive little afferent input and are most sensitive to high Tpo. Many of these low-firing neurons probably serve in controlling heat loss responses. High-firing warm-sensitive neurons receive much excitatory afferent input and are usually sensitive only to low Tpo. These neurons probably exert their greatest influence on heat production responses, possibly by inhibiting and, thus, determining the thermosensitive characteristics of nearby cold-sensitive neurons.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号