首页 | 本学科首页   官方微博 | 高级检索  
     


Protein filaments may initiate the assembly of the Bacillus subtilis spore coat.
Authors:A I Aronson  L Ekanayake  P C Fitz-James
Affiliation:Department of Biological Sciences, Purfue University, West Lafayette, IN 47907.
Abstract:The Bacillus subtilis spore coat consists of three morphological layers: a diffuse undercoat, a striated inner coat and a densely staining outer coat. These layers are comprised of at least 15 polypeptides and the absence of one in particular, CotE, had extensive pleiotropic effects. Only a partial inner coat was present on the spores which were lysozyme-sensitive. The initial rate of germination of these spores was the same as for the wild type but the overall optical density decrease was greater apparently due to the loss of the incomplete spore coat from germinated spores. Suppressors of the lysozyme-sensitive phenotype had some outer coat proteins restored as well as some novel minor polypeptides. These spores still lacked an undercoat and germinated as did those produced by the cotE deletion strain. The CotE protein was synthesized starting at stage II-III of sporulation, long before the appearance of the coat on spores at stage IV-V. Despite its apparent hydrophilic properties, this protein was present in the crude insoluble fraction from sporulating cells. CotE was not solubilized by high or low ionic strength buffers not by detergents used for the solubilization of membrane proteins. Either 8 M urea or 6 M guanidine HC1 was required and dialysis against a low ionic strength buffer resulted in aggregation into long, sticky filaments. Both the CotE and CotT spore coat proteins appeared to be necessary for the formation of these filaments. Each of these proteins contains sequences related to a bovine intermediate filament protein so their interaction could result in an analogous structure.(ABSTRACT TRUNCATED AT 250 WORDS)
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号