首页 | 本学科首页   官方微博 | 高级检索  
     


Transport of [2-14C]jasmonic acid from leaves to roots mimics wound-induced changes in endogenous jasmonic acid pools in Nicotiana sylvestris
Authors:Zong-Ping Zhang  Ian T. Baldwin
Affiliation:(1) Department of Biological Sciences, SUNY University at Buffalo, Buffalo, NY 14260, USA, US
Abstract:Jasmonic acid (JA) is part of a long-distance signal-transduction pathway that effects increases in de-novo nicotine synthesis in the roots of Nicotiana sylvestris Speg et Comes (Solanaceae) after leaf wounding. Elevated nicotine synthesis increases whole-plant nicotine pools and makes plants more resistant to herbivores. Leaf wounding rapidly increases JA pools in damaged leaves, and after a 90-min delay, root JA pools also increase. The systemic response in the roots could result from either: (i) the direct transport of JA from wounded leaves, or (ii) JA synthesis or its release from conjugates in roots in response to a second, systemic signal. We synthesized [2-14C]JA, and applied it to a single leaf in a quantity (189 μg) known to elicit both a whole-plant nicotine and root JA response equivalent to that found in plants subjected to leaf wounding. We quantified radioactive material in JA, and in metabolites both more and less polar than JA, from treated and untreated leaves and roots of plants in eight harvests after JA application. [2-14C]Jasmonic acid was transported from treated leaves to roots at rates and in quantities equivalent to the wound-induced changes in endogenous JA pools. The [2-14C]JA that had been transported to the roots declined at the same rate as endogenous JA pools in the roots of plants after leaf wounding. Most of the labeled material applied to leaves was metabolized or otherwise immobilized at the application site, and the levels of [2-14C]JA in untreated leaves did not increase over time. We measured the free JA pools before and after four different hydrolytic extractions of root and shoot tissues to estimate the size of the potential JA conjugate pools, and found them to be 10% or less of the free JA pool. We conclude that the direct transport of wound-induced JA from leaves to roots can account for the systemic increase in root JA pools after leaf wounding, and that metabolism into less polar structures determines the duration of this systemic increase. However, the conclusive falsification of this hypothesis will require the suppression of all other signalling pathways which could have shoot-to-root transport kinetics similar to that of endogenous JA. Received: 14 April 1997 / Accepted: 9 June 1997
Keywords:: Defense (induced)  [2-14C]Jasmonic acid  Nicotiana (wound response)  Nicotine  Signal transduction (systemic)
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号