首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Chromosome anomalies in mouse oocytes after irradiation.
Authors:W Reichert  I Hansmann  G R?hrborn
Abstract:We investigated the cytogenetic effects of X-rays on unfertilized mouse oocytes. NMRI females received an irradiation with 0,22.2,66.6,200, and 600 R during the preovulatory phase 3 hrs after HCG (human chorionic gonadotrophin). This is a stage during oogenesis in which the oocytes pass from late dictyotene to diakinesis. Chromosome analysis was performed after ovulation at metaphase II. From these experiments we can draw the following conclusions: 1) X-rays induced during the preovulatory phase a high number of chromosome anomalies. Among these, structural anomalies prevail. 7 out of 144 ovulated oocytes in matched controls carried such an abnormality, whereas after irradiation we observed with 22.2, 66.6, 200, and 600 R, 11 out of 72, 34 out of 108, 89 out of 102, and 122 out of 124, respectively. 2) Irradiation seems also to affect the chromosome segregation during the 1. meiotic division, as we observed after 22.2, 66.6, and 200 R a total of 6 oocytes out of 204 with a supernummary chromosome. In controls, however, no hyperploidy was found in 143 ova. This increase, however, was not significant. 3) Chromosome anomalies, e.g. breaks and deletions that go back to a one-break event increased linearly with increasing dose. Exchanges, however, going back to two-break events fittest best to the linear-quadratic dose-response model. 4) The dose of 600 R seems to represents a kind of borderline in this experiment, because nearly all (122 out 124) carried at least one structural chromosome anomaly. It is also this dose after which the highest frequency of reciprocal translocations was observed in a hump-shaped slope in spermatocytes after irradiation of spermatogonia (Preston and Brewen, 1973). With an increasing dosage up to 1200 R the frequency of translocations decrease again. The elimination of cells, crossing this borderline, might be due to genetic or non-genetic effects. 5) The frequency of radiation-induced translocations per oocyte agrees with the frequency of translocations in human lymphocytes (Dolphin and Lloyd, 1974) after in vitro irradiation. 6) Significant, lower frequencies of structural chromosome anomalies were observed irradiating earlier stages of mouse oogenesis. These stages are dictyotene from females at the age of 3, or 6 weeks and prophase I-stages in female embryos on the 17th day of gestation. This result may be due to a lower sensitivity of these stages or to modifying events during the interval between irradiation and preparations.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号