首页 | 本学科首页   官方微博 | 高级检索  
   检索      


L-type calcium current in right ventricular outflow tract myocytes of rabbit heart
Authors:ShengHui Liang  ChenHui Lin  Yuan Li  TaiFeng Liu  Yan Wang
Institution:1. Fujian Medical University Graduate Student Education Institute, Fuzhou, 350004, China
2. Xiamen Heart Center, Xiamen Zhongshan Hospital of Xiamen University, Xiamen, 361004, China
3. Department of Physiology and Biophysics, College of Life Sciences, Peking University, Beijing, 100871, China
Abstract:The mechanism of idiopathic ventricular tachycardia originating from the right ventricular outflow tract (RVOT) is not clear. Many clinical reports have suggested a mechanism of triggered activity. However, there are few studies investigating this because of the technical difficulties associated with examining this theory. The L-type calcium current (I Ca-L), an important inward current of the action potential (AP), plays an important role in arrhythmogenesis. The aim of this study was to explore differences in the APs of right ventricular (RV) and RVOT cardiomyocytes, and differences in electrophysiological characteristics of the ICa-L in these myocytes. Rabbit RVOT and RV myocytes were isolated and their AP and I Ca-L were investigated using the patch-clamp technique. RVOT cardiomyocytes had a wider range of AP duration (APD) than RV cardiomyocytes, with some markedly prolonged APDs and markedly shortened APDs. The markedly shortened APDs in RVOT myocytes were abolished by treatment with 4-AP, an inhibitor of the transient outward potassium current, but the markedly prolonged APDs remained, with some myocytes with a long AP plateau not repolarizing to resting potential. In addition, early afterdepolarization (EAD) and second plateau responses were seen in RVOT myocytes but not in RV myocytes. RVOT myocytes had a higher current density for I Ca-L than RV myocytes (RVOT (13.16±0.87) pA pF−1, RV (8.59±1.97) pA pF−1; P<0.05). The I Ca-L and the prolonged APD were reduced, and the EAD and second plateau response disappeared, after treatment with nifedipine (10 μmol L−1), which blocks the I Ca-L. In conclusion, there was a wider range of APDs in RVOT myocytes than in RV myocytes, which is one of the basic factors involved in arrhythmogenesis. The higher current density for I Ca-L is one of the factors causing prolongation of the APD in RVOT myocytes. The combination of EAD with prolonged APD may be one of the mechanisms of RVOT-VT generation.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号