首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Spin trapping of free radical species produced during the microsomal metabolism of ethanol
Authors:E Albano  A Tomasi  L Goria-Gatti  M U Dianzani
Institution:Dipartimento di Medicina ed Oncologia Sperimentale, Università di Torino, Italy.
Abstract:Liver microsomes incubated with a NADPH regenerating system, ethanol and the spin trapping agent 4-pyridyl-1-oxide-t-butyl nitrone (4-POBN) produced an electron spin resonance (ESR) signal which has been assigned to the hydroxyethyl free radical adduct of 4-POBN by using 13C-labelled ethanol. The free radical formation was dependent upon the activity of the microsomal monoxygenase system and increased following chronic feeding of the rats with ethanol. The production of hydroxyethyl free radicals was stimulated by the addition of azide, while catalase and OH. scavengers decreased it. This suggested that hydroxyl radicals (OH.) produced in a Fenton-type reaction from endogenously formed hydrogen peroxide were involved in the free radical activation of ethanol. Consistently, the supplementation of iron, under various forms, also increased the intensity of the ESR signal which, on the contrary, was inhibited by the iron-chelating agent desferrioxamine. Microsomes washed with a solution containing desferrioxamine and incubated in a medium treated with Chelex X-100 in order to remove contaminating iron still produced hydroxyethyl radicals, although at a reduced rate. Under these conditions the free radical formation was apparently independent from the generation of OH. radicals, whereas addition of cytochrome P-450 inhibitors decreased the hydroxyethyl radical formation, suggesting that a cytochrome P-450-mediated process might also be involved in the activation of ethanol. Reduced glutathione (GSH) was found to effectively scavenge the hydroxyethyl radical, preventing its trapping by 4-POBN. The data presented suggest that ethanol-derived radicals could be generated during the microsomal metabolism of alcohol probably through two different pathways. The detection of ethanol free radicals might be relevant in understanding the pathogenesis of the liver lesions which are a consequence of alcohol abuse.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号