首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Effect of temperature regimes on gibberellin levels in thermosensitive dwarf apple trees
Authors:G L Steffens  P Hedden
Institution:USDA, ARS, Beltsville Agricultural Research Center, Beltsville, MD 20705, USA;Dept of Agricultural Science, Univ, of Bristol, AFRC Inst. of Arable Crops Research, Long Ashton Research Station, Long Ashton, Bristol BS18 9AF, UK.
Abstract:Orchard-grown dwarf apple (Malus domestica Borkh.) trees selected from a hybrid population were propagated by tissue culture but had a growth pattern similar to standard cv. Golden Delicious plants when grown at constant 27°C instead of the expected dwarf pattern of growth. Shoot elongation was markedly reduced, with or without gibberellin A1 (GA1) or GA4 treatment, when trees were grown in an environment where day temperature was maintained at 35°C for 2 h in a ramped regime (night 20°C day ramped to 35°C, held for 2 h and ramped down to 20°C night over a 14-h photoperiod). Application of GA1 or GA4 partially overcame growth retardation resulting from prior paclobutrazol treatment of both standard and dwarf trees grown at constant 27°C and of standard trees grown in the ramped environment. However, these GAs had no effect on paclobutrazol-treated or untreated dwarfs grown in the ramped regime. Gas chromatography-mass spectrometry with labelled internal standards was used to quantify GA1, GA3, GA8, GA19, GA20 and GA29 in extracts from standard and dwarf plants grown either at a constant 27°C or in a 20-30-20°C ramped temperature regime. Standard plants, which elongate quite rapidly in either environment, had similar levels of these GAs in both temperature regimes. The slowly growing dwarfs in the ramped temperature environment contained three times more GA19 than the rapidly elongating dwarfs grown at 27°C. The concentrations of the other GAs were reduced to ca 40% or less in plants grown in the ramped temperature regime compared with those grown at 27°C. These data suggest that shoot elongation of dwarf plants is sensitive to elevated temperatures both as a result of reduced responsiveness to GAs and because of a reduction in the concentration of GA1, apparently as a result of a lower rate of conversion of GA19 to GA20. It is possible that the altered GA metabolism may be a consequence of the change in GA sensitivity.
Keywords:Apple  dwarf  gibberellin  growth retardant  high temperature              Matus domestica            paclobutrazol  triazole
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号