首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Protected P-Element Termini Suggest a Role for Inverted-Repeat-Binding Protein in Transposase-Induced Gap Repair in Drosophila Melanogaster
Authors:B E Staveley  T R Heslip  R B Hodgetts  and J B Bell
Institution:Present address: Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2E9.
Abstract:P-element transposition is thought to occur by a cut-and-paste mechanism that generates a double-strand break at the donor site, the repair of which can lead to internally deleted elements. We have generated a series of both phenotypically stronger and weaker allelic derivatives of vg(21), a vestigial mutant caused by a P-element insertion in the 5' region of the gene. Virtually all of the new alleles arose by internal deletion of the parental element in vg(21), and we have characterized a number of these internally deleted P elements. Depending upon the selection scheme used, we see a very different spectrum of amount and source of P-element sequences in the resultant derivatives. Strikingly, most of the breakpoints occur within the inverted-repeats such that the last 15-17 bp of the termini are retained. This sequence is known to bind the inverted-repeat-binding protein (IRBP). We propose that the IRBP may act to preserve the P-element ends when transposition produces a double-strand gap. This allows the terminus to serve as a template upon which DNA synthesis can act to repair the gap. Filler sequences found at the breakpoints of the internally deleted P elements resemble short stretches, often in tandem arrays, of these terminal sequences. The structure of the filler sequences suggests replication slippage may occur during the process of gap repair.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号