首页 | 本学科首页   官方微博 | 高级检索  
     


Nitrogen dynamics in arctic tundra soils of varying age: differential responses to fertilization and warming
Authors:Yuriko Yano  Gaius R. Shaver  Edward B. Rastetter  Anne E. Giblin  James A. Laundre
Affiliation:1. Montana State University, LRES, Bozeman, MT, 59171, USA
2. The Ecosystems Center, Marine Biological Laboratory, Woods Hole, MA, 02543, USA
Abstract:In the foothills of the Brooks Range, Alaska, different glaciation histories have created landscapes with varying soil age. Productivity of most of these landscapes is generally N limited, but varies widely, as do plant species composition and soil properties (e.g., pH). We hypothesized that the projected changes in productivity and vegetation composition under a warmer climate might be mediated through differential changes in N availability across soil age. We compared readily available [water-soluble NH4 +, NO3 ?, and amino acids (AA)], moderately available (soluble proteins), hydrolyzable, and total N pools across three tussock-tundra landscapes with soil ages ranging from 11.5k to 300k years. The effects of fertilization and warming on these N pools were also compared for the two younger sites. Readily available N was highest at the oldest site, and AA accounted for 80–89 % of this N. At the youngest site, inorganic N constituted the majority (80–97 %) of total readily available N. This variation reflected the large differences in plant functional group composition and soil chemical properties. Long-term (8–16 years) fertilization increased the soluble inorganic N by 20- to 100-fold at the intermediate-age site, but only by twofold to threefold at the youngest site. Warming caused small and inconsistent changes in the soil C:N ratio and AA, but only in soils beneath Eriophorum vaginatum, the dominant tussock-forming sedge. These differential responses suggest that the ecological consequences of warmer climates on these tundra ecosystems are more complex than simply elevated N-mineralization rates, and that the responses of landscapes might be impacted by soil age, or time since deglaciation.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号