首页 | 本学科首页   官方微博 | 高级检索  
     


A nitrogen fertilization field study of carbon-13 and nitrogen-15 transfers in ectomycorrhizas of Pinus sabiniana
Authors:María Victoria Albarracín  Johan Six  Benjamin Z. Houlton  Caroline S. Bledsoe
Affiliation:1. Department of Land, Air and Water Resources, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA
2. Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
Abstract:Ectomycorrhizal (EM) fungi form relationships with higher plants; plants transfer C to fungi, and fungi transfer nutrients to their host. While evidence indicates that this interaction is largely mutualistic, less is known about how nutrient supply and EM associates may alter C and nutrient exchanges, especially in intact plant-soil-microbe systems in the field. In a dual-labeling experiment with N fertilization, we used C and N stable isotopes to examine in situ transfers in EM pine trees in a Pinus sabiniana woodland in northern California. We added 15NH4SO2 and 13CO2 to track 13C transfer from pine needles to EM roots and 15N transfer from soil to EM roots and pine needles. Transfers of 13C and 15N differed with EM morphotype and with N fertilization. The brown morphotype received the least C per unit of N transferred (5:1); in contrast red and gold morphotypes gained more C and transferred less N (17:1 and 25:1, respectively). N fertilization increased N retention by ectomycorrhizas (EMs) but did not increase N transfer from EMs to pine needles. Therefore N fertilization positively affected both nutrient and C gains by EMs, increasing net C flows and N retention in EMs. Our work on intact and native trees/EM associations thereby extends earlier conclusions based on pot studies with young plants and culturable EM fungi; our results support the concept that EM-host relationships depend on species-level differences as well as responses to soil resources such as N.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号