首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The structure of monoamine oxidase from Aspergillus niger provides a molecular context for improvements in activity obtained by directed evolution
Authors:Atkin Kate E  Reiss Renate  Koehler Valentin  Bailey Kevin R  Hart Sam  Turkenburg Johan P  Turner Nicholas J  Brzozowski A Marek  Grogan Gideon
Institution:1 York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5YW, UK
2 School of Chemistry, Manchester Interdisciplinary Biocentre, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
Abstract:Monoamine oxidase from Aspergillus niger (MAO-N) is a flavoenzyme that catalyses the oxidative deamination of primary amines. MAO-N has been used as the starting model for a series of directed evolution experiments, resulting in mutants of improved activity and broader substrate specificity, suitable for application in the preparative deracemisation of primary, secondary and tertiary amines when used as part of a chemoenzymatic oxidation-reduction cycle. The structures of a three-point mutant (Asn336Ser/Met348Lys/Ile246Met or MAO-N-D3) and a five-point mutant (Asn336Ser/Met348Lys/Ile246Met/Thr384Asn/Asp385Ser or MAO-N-D5) have been obtained using a multiple-wavelength anomalous diffraction experiment on a selenomethionine derivative of the truncated MAO-N-D5 enzyme. MAO-N exists as a homotetramer with a large channel at its centre and shares some structural features with human MAO B (MAO-B). A hydrophobic cavity extends from the protein surface to the active site, where a non-covalently bound flavin adenine dinucleotide (FAD) sits at the base of an ‘aromatic cage,’ the sides of which are formed by Trp430 and Phe466. A molecule of l-proline was observed near the FAD, and this ligand superimposed well with isatin, a reversible inhibitor of MAO-B, when the structures of MAO-N proline and MAO-B-isatin were overlaid. Of the mutations that confer the ability to catalyse the oxidation of secondary amines in MAO-N-D3, Asn336Ser reduces steric bulk behind Trp430 of the aromatic cage and Ile246Met confers greater flexibility within the substrate binding site. The two additional mutations, Thr384Asn and Asp385Ser, that occur in the MAO-N-D5 variant, which is able to oxidise tertiary amines, appear to influence the active-site environment remotely through changes in tertiary structure that perturb the side chain of Phe382, again altering the steric and electronic character of the active site near FAD. The possible implications of the change in steric and electronic environment caused by relevant mutations are discussed with respect to the improved catalytic efficiency of the MAO-N variants described in the literature.
Keywords:MAO  monoamine oxidase  MAO-N  MAO from Aspergillus niger  MAO-N-D3  Asn336Ser/Met348Lys/Ile246Met  MAO-N-D5  Asn336Ser/Met348Lys/Ile246Met/Thr384Asn/Asp385Ser  MAO-A/MAO-B  human MAOs  FAD  flavin adenine dinucleotide  AMBA  α-methyl benzylamine  ClogP  calculated logP
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号