首页 | 本学科首页   官方微博 | 高级检索  
     


Attenuation of methylglyoxal-induced glycation and cellular dysfunction in wound healing by Centella cordifolia
Authors:Ali S. Alqahtani  Kong M. Li  Valentina Razmovski-Naumovski  Antony Kam  Perwez Alam  George Q. Li
Abstract:Current pre-clinical evidences of Centella focus on its pharmacological effects on normal wound healing but there are limited studies on the bioactivity of Centella in cellular dysfunction associated with diabetic wounds. Hence we planned to examine the potential of Centella cordifolia in inhibiting methylglyoxal (MGO)-induced extracellular matrix (ECM) glycation and promoting the related cellular functions. A Cell-ECM adhesion assay examined the ECM glycation induced by MGO. Different cell types that contribute to the healing process (fibroblasts, keratinocytes and endothelial cells) were evaluated for their ability to adhere to the glycated ECM. Methanolic extract of Centella species was prepared and partitioned to yield different solvent fractions which were further analysed by high performance liquid chromatography equipped with photodiode array detector (HPLC-PDA) method. Based on the antioxidant [2,2-diphenyl-1-picrylhydrazyl (DPPH) assay] screening, anti-glycation activity and total phenolic content (TPC) of the different Centella species and fractions, the ethyl acetate fraction of C. cordifolia was selected for further investigating its ability to inhibit MGO-induced ECM glycation and promote cellular distribution and adhesion. Out of the three Centella species (C. asiatica, C. cordifolia and C. erecta), the methanolic extract of C. cordifolia showed maximum inhibition of Advanced glycation end products (AGE) fluorescence (20.20 ± 4.69 %, 25.00 ± 3.58 % and 16.18 ± 1.40 %, respectively). Its ethyl acetate fraction was enriched with phenolic compounds (3.91 ± 0.12 mg CAE/μg fraction) and showed strong antioxidant (59.95 ± 7.18 μM TE/μg fraction) and antiglycation activities. Improvement of cells spreading and adhesion of endothelial cells, fibroblasts and keratinocytes was observed for ethyl acetate treated MGO-glycated extracellular matrix. Significant reduction in attachment capacity of EA.hy926 cells seeded on MGO-glycated fibronectin (41.2%) and attachment reduction of NIH3t3 and HaCaT cells seeded on MGO-glycated collagen (33.7% and 24.1%, respectively) were observed. Our findings demonstrate that ethyl acetate fraction of C. cordifolia was effective in attenuating MGO-induced glycation and cellular dysfunction in the in-vitro wound healing models suggesting that C. cordifolia could be a potential candidate for diabetic wound healing. It could be subjected for further isolation of new phytoconstituents having potential diabetic wound healing properties.
Keywords:Centella   Antiglycation   Methylglyoxal   Wounds   Diabetic complications   HPLC-PDA
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号