首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Investigation of the XCAT phantom as a validation tool in cardiac MRI tracking algorithms
Institution:2. Klinik für Radio-Onkologie, Universitäts Spital Zürich, University of Zurich, Zürich, Switzerland;3. Department of Radiation Oncology, University Medical Center Schleswig-Holstein, Kiel, Germany;4. Department of Radiation Oncology, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany;5. University of Lübeck, Institute for Robotic and Cognitive Systems, Lübeck, Germany;11. Med. Klinik m.S. Kardiologie, Charité-Universitätsmedizin Berlin, Berlin, Germany;12. Klinik für Innere Medizin III, Abteilung für Elektrophysiologie und Rhythmologie, Universitätsklinikum Schleswig-Holstein, Kiel, Germany;1. Saint-Etienne University Hospital, Department of Cardiology, Saint-Priest-En-Jarez, F-42270, France;2. INSERM-IADI, U947, Vand?uvre lès-Nancy, F-54500, France;3. Centre Eugène Marquis, Department of Radiation Oncology, Rennes, F-35000, France;4. INSERM-LTSI, U1099, Rennes, F-35000, France;5. Rennes University Hospital, Department of Cardiology, Rennes, F-35000, France;1. Ming Hsieh Department of Electrical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, USA;2. Applied Science Laboratory, GE Healthcare, AB, Calgary, Canada;3. Foothills Medical Center, Calgary, Canada;4. Department of Radiology, Keck School of Medicine, University of Southern California Medical Center, Los Angeles, USA
Abstract:PurposeTo describe our magnetic resonance imaging (MRI) simulated implementation of the 4D digital extended cardio torso (XCAT) phantom to validate our previously developed cardiac tracking techniques. Real-time tracking will play an important role in the non-invasive treatment of atrial fibrillation with MRI-guided radiosurgery. In addition, to show how quantifiable measures of tracking accuracy and patient-specific physiology could influence MRI tracking algorithm design.MethodsTwenty virtual patients were subjected to simulated MRI scans that closely model the proposed real-world scenario to allow verification of the tracking technique’s algorithm. The generated phantoms provide ground-truth motions which were compared to the target motions output from our tracking algorithm. The patient-specific tracking error, ep, was the 3D difference (vector length) between the ground-truth and algorithm trajectories. The tracking errors of two combinations of new tracking algorithm functions that were anticipated to improve tracking accuracy were studied. Additionally, the correlation of key physiological parameters with tracking accuracy was investigated.ResultsOur original cardiac tracking algorithm resulted in a mean tracking error of 3.7 ± 0.6 mm over all virtual patients. The two combinations of tracking functions demonstrated comparable mean tracking errors however indicating that the optimal tracking algorithm may be patient-specific.ConclusionsCurrent and future MRI tracking strategies are likely to benefit from this virtual validation method since no time-resolved 4D ground-truth signal can currently be derived from purely image-based studies.
Keywords:Tracking evaluation  Digital phantom  Cardiac tracking  MRI-guided radiotherapy  AF"}  {"#name":"keyword"  "$":{"id":"k0030"}  "$$":[{"#name":"text"  "_":"atrial fibrillation  AP"}  {"#name":"keyword"  "$":{"id":"k0040"}  "$$":[{"#name":"text"  "_":"anterior posterior  DICOM"}  {"#name":"keyword"  "$":{"id":"k0050"}  "$$":[{"#name":"text"  "_":"Digital Imaging and Communications in Medicine  ECG"}  {"#name":"keyword"  "$":{"id":"k0060"}  "$$":[{"#name":"text"  "_":"electrocardiogram  FLASH"}  {"#name":"keyword"  "$":{"id":"k0070"}  "$$":[{"#name":"text"  "_":"fast low-angle shot  LA"}  {"#name":"keyword"  "$":{"id":"k0080"}  "$$":[{"#name":"text"  "_":"left atrium  LR"}  {"#name":"keyword"  "$":{"id":"k0090"}  "$$":[{"#name":"text"  "_":"left right  MRI"}  {"#name":"keyword"  "$":{"id":"k0100"}  "$$":[{"#name":"text"  "_":"magnetic resonance imaging  MRI-linac"}  {"#name":"keyword"  "$":{"id":"k0110"}  "$$":[{"#name":"text"  "_":"MRI linear accelerator  SI"}  {"#name":"keyword"  "$":{"id":"k0120"}  "$$":[{"#name":"text"  "_":"superior inferior  TrueFISP"}  {"#name":"keyword"  "$":{"id":"k0130"}  "$$":[{"#name":"text"  "_":"fast steady-state free precession  XCAT"}  {"#name":"keyword"  "$":{"id":"k0140"}  "$$":[{"#name":"text"  "_":"4D digital extended cardio torso
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号