首页 | 本学科首页   官方微博 | 高级检索  
     


Effects of Carbon Nanotubes in a Chitosan/Collagen-Based Composite on Mouse Fibroblast Cell Proliferation
Authors:Wen Zhao  Wenwen Yu  Jiawei Zheng  Ying Wang  Zhiyuan Zhang  Dongsheng Zhang
Affiliation:1. Department of Stomatology, Provincial Hospital Affiliated to Shandong University, 324 jingwu Road, Jinan, 250021, Shandong, China
2. Department of Oral and Maxillo-facial Surgery, The Ninth People’s Hospital of Shanghai, School of Stomatology, Shanghai Jiaotong University, Shanghai, China
3. Key Laboratory for Thin Film and Microfabrication Technology, Ministry of Education, Research Institute of Micro/Nanometer Science and Technology, Shanghai Jiao Tong University, Shanghai, China
Abstract:This study investigated the in vitro cytocompatibility of carbon nanotubes (CNTs) in a chitosan/collagen-based composite. Mouse fibroblasts were cultured on the surface of a novel material consisting of CNTs in a chitosan/collagen-based composite (chitosan/collagen+CNTs group). Chitosan/collagen composites without CNTs served as the control material (chitosan/collagen group) and cells cultured normally in tissue culture plates served as blank controls (blank control group). Cell adhesion and proliferation were observed, and cell apoptosis was measured. The doubling time (DT1) of cells was significantly shorter in the chitosan/collagen+CNTs group than in the chitosan/collagen group, and that in the chitosan/collagen group was shorter than in the blank control group. The CNTs in the chitosan/collagen-based composites promoted mouse fibroblast adhesion, producing a distinct cytoskeletal structure. At 24 h after culture, the cytoskeleton of the cells in the chitosan/collagen+CNTs group displayed typical fibroblastic morphology, with clear microfilaments. Cells in the chitosan/collagen group were typically round, with an unclear cytoskeleton. The blank control group even had a few unattached cells. At 4 days after incubation, no early apoptosis of cells was detected in the blank control group, whereas early apoptosis of cells was observed in the chitosan/collagen+CNTs and chitosan/collagen groups. No significant difference in the proportion of living cells was detected among the three groups. After entering the plateau stage, the average cell number in the chitosan/collagen+CNTs group was similar to that in the chitosan/collagen group and significantly smaller than that in the blank control group. Early apoptosis of cells in the blank control group was not detectable. There were significant differences in early apoptosis among the three groups. These results suggest that CNTs in a chitosan/collagen-based composite did not cause significant cytotoxic effects on mouse fibroblasts. Compared with chitosan/collagen composites, early adhesion and proliferation of fibroblasts were increased on chitosan/collagen+CNTs. However, at relatively high cell densities, the CNTs in the chitosan/collagen-based composite might exert an inhibitory effect on mouse fibroblast proliferation by inducing apoptosis.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号