首页 | 本学科首页   官方微博 | 高级检索  
     


A mutation causing reduced biological activity and stability of thyroxine-binding globulin probably as a result of abnormal glycosylation of the molecule
Authors:Y Mori  S Seino  K Takeda  I L Flink  Y Murata  G I Bell  S Refetoff
Affiliation:Department of Medicine, University of Chicago, Illinois 60637.
Abstract:T4-binding globulin (TBG), a 54-kilodalton glycoprotein, is the major thyroid hormone transport protein in man. The exact nature of the mutations causing X chromosome-linked TBG deficiency, which affect about 1 in 2,500 newborn males, is unknown. Here we report the sequence of a unique variant TBG (TBG-Gary) encoding a protein with severely impaired T4 binding as well as decreased stability at 37 C, resulting in its rapid in vivo denaturation. A single nucleotide substitution in the codon for residue 96 of the mature protein replaces isoleucine with asparagine; this replacement creates an additional site for N-linked glycosylation. The anodal shift of TBG-Gary on isoelectric focusing gel electrophoresis suggests that this new site is likely glycosylated. Since glycosylated is required for TBG to assume its correct tertiary structure, but is not subsequently necessary for maintenance of the biological properties or stability of the molecule, we believe that the likely presence of additional carbohydrate probably affects a higher order structure of the molecule and is thus responsible for the reduced stability and hormone binding activity of TBG-Gary (TBGASN-96).
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号