首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Regulation of growth and photosynthesis by Oscillatoria agardhii grown with a light/dark cycle
Authors:Anton F Post  Johan G Loogman  Luuc R Mur
Institution:Laboratorium voor Microbiologie, University of Amsterdam, Nieuwe Achtergracht 127, 1018 WS Amsterdam, The Netherlands
Abstract:Abstract The cyanobacterium Oscillatoria agardhii was grown in turbidostat cultures with the light energy supply in either the continuous mode or in the pulsed mode (8/16 h light/dark (L/D) cycle). The light irradiance value used was sufficient to allow the maximal growth rate to be attained, when supplied continuously. Adaptation of O. agardhii to the L/D cycle was characterized by an increase in pigment content and photosynthetic performance, accompanied by a decrease in growth rate. This mode of adaptation resembled the adaptation of O. agardhii to continuous low light intensities. It is suggested that in this case the L/D cycle provokes this adaptation in order to allow the cells to accumulate carbohydrate rapidly during the light period. This was attributed to the storage of polyglucose, which served as a carbon and energy source for growth in the dark. The utilization of polyglucose in the dark was able to sustain the synthesis of all other cell components at the same rate as when cells were growing in the light. The growth yield in the dark, whilst metabolizing internally stored polyglucose, was 0.52 g cell C/g polyglucose C, or 0.62 g cell dry weight/g polyglucose. Although in the pulsed mode there is a 66% loss in light irradiance per 24 h when compared with a continuous light regime, the growth rate of the cyanobacteria grown in the pulsed mode was only 35% lower than the growth rate of a culture grown in continuous light. This can be explained by a high growth yield in the dark and by increased CO2 fixation rates in the light of cells grown in the pulsed mode.
Keywords:Cyanobacteria  carbohydrate accumulation  protein synthesis  photosynthesis  light/dark cycle  light intensity adaptation
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号