首页 | 本学科首页   官方微博 | 高级检索  
     


Residential magnetic and electric fields
Authors:W T Kaune  R G Stevens  N J Callahan  R K Severson  D B Thomas
Affiliation:Biology and Chemistry Department, Battelle Pacific Northwest Laboratories, Richland, Washington.
Abstract:A magnetic flux density (MFD) and electric-field (E-field) data-acquisition system was built for characterizing extremely low-frequency fields in residences. Every 2 min during 24-h periods, MFD and E-field measurements were made in 43 homes in King, Pierce, and Snohomish counties of Washington State. The total electrical energy used in each residence during the 24-h measurement period was also recorded, and maps were drawn to scale of the distribution wiring within 43 m (140 ft) of these homes. Finally, on a separate date, field measurements were made in each home during an epidemiological interview. The results of this study can be summarized as follows: 1) 24-h-average MFD measured at two separate points in the family room were correlated, as were a 24-h-average bedroom measurement and the mean of the two family-room measurements. 2) The 24-h-average family-room MFD and E-field measurements were uncorrelated. 3) The 24-h-average total harmonic distortions of family-room MFD and E-fields were less than about 24% and 7%, respectively. 4) Residential MFD exhibited a definite 24-h (diurnal) cycle. 5) The 24-h-average and interviewer-measured MFD were correlated. 6) Residential 24-h-average MFD were correlated with the wiring code developed by Wertheimer and Leeper. 7) An improved prediction of 24-h-average residential MFD was obtained using the total number of service drops, the distance to neighboring transmission lines, and the number of primary phase conductors.
Keywords:magnetic fields  exposure assessment  ELF  power frequency  epidemiology  cancer  residential
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号