首页 | 本学科首页   官方微博 | 高级检索  
     


Synthesis and binding affinity of a fluorine-substituted peroxisome proliferator-activated gamma (PPARgamma) ligand as a potential positron emission tomography (PET) imaging agent
Authors:Lee Byung Chul  Lee Kyo Chul  Lee Hsiaoju  Mach Robert H  Katzenellenbogen John A
Affiliation:Department of Chemistry, University of Illinois, Urbana, Illinois 61801, USA.
Abstract:The peroxisome proliferator-activated receptor gamma (PPARgamma) is an important regulator of lipid metabolism and the differentiation of pre-adipocytes. Thus, imaging PPARgamma in vivo using positron-emission tomography (PET) might be useful in assessing lipid metabolism disorders and identifying tumor cell differentiation. A fluorine-substituted PPARgamma ligand from tyrosine-benzophenone class, compound 1, has a very high affinity for PPARgamma receptor (Ki = 0.14 nM). To develop this compound as a PPARgamma PET imaging agent, we investigated synthetic routes suitable for its labeling with the short-lived PET radionuclide fluorine-18 (t1/2 = 110 min). To obtain the high specific activity material needed for receptor imaging with this isotope, reactions need to proceed efficiently, within a short time, starting from fluoride ion at the tracer level. The most promising approach involves introduction of fluorine into a suitable benzophenone precursor, followed by efficient coupling of this intermediate with the heterocyclic tyrosine component using a copper-catalyzed Ullmann-type condensation.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号