首页 | 本学科首页   官方微博 | 高级检索  
     


A model for the neuronal implementation of selective visual attention based on temporal correlation among neurons
Authors:Ernst Niebur  Christof Koch
Affiliation:(1) Computation and Neural Systems Program, California Institute of Technology, 91125 Pasadena, CA, USA;(2) Present address: Caltech, 139-74, 91125 Pasadena, CA, USA
Abstract:We propose a model for the neuronal implementation of selective visual attention based on temporal correlation among groups of neurons. Neurons in primary visual cortex respond to visual stimuli with a Poisson distributed spike train with an appropriate, stimulus-dependent mean firing rate. The spike trains of neurons whose receptive fields donot overlap with the ldquofocus of attentionrdquo are distributed according to homogeneous (time-independent) Poisson process with no correlation between action potentials of different neurons. In contrast, spike trains of neurons with receptive fields within the focus of attention are distributed according to non-homogeneous (time-dependent) Poisson processes. Since the short-term average spike rates of all neurons with receptive fields in the focus of attention covary, correlations between these spike trains are introduced which are detected by inhibitory interneurons in V4. These cells, modeled as modified integrate-and-fire neurons, function as coincidence detectors and suppress the response of V4 cells associated with non-attended visual stimuli. The model reproduces quantitatively experimental data obtained in cortical area V4 of monkey by Moran and Desimone (1985).
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号