首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Effects of aboveground herbivory on plants with long-term belowground biomass storage
Authors:Shyam M Thomas  Karen C Abbott  Kirk A Moloney
Institution:1.Department of Ecology, Evolution, and Organismal Biology,Iowa State University,Ames,USA;2.Department of Entomology,University of California Riverside,Riverside,USA;3.Department of Biology,Case Western Reserve University,Cleveland,USA
Abstract:Plant tolerance to herbivory is contingent on multiple traits and adaptive mechanisms, which makes it a complex response with ecological implications. In plants with long-term belowground storage, allocation of biomass to inaccessible parts belowground in response to folivory is a well-recognized tolerance mechanism. In temperate regions, spring growth from buried rootstock is common among winter deciduous plants and is often followed by regrowth after defoliation, both of which draws resources from the stored reserves. We developed a mathematical model to analyze this tolerance response in a winter deciduous plant with long-term belowground biomass when it is defoliated by a specialist insect folivore. The model explores how three closely associated traits—(1) belowground biomass allocation to roots, (2) spring utilization of stored reserves, and (3) post-defoliation regrowth capacity—modulate the persistence and dynamics of the plant and herbivore populations. Model results show that allocation to belowground storage is not only a critical component of tolerance but also influences the herbivore population dynamics in ways that depend on how and when plant biomass is allocated and used. Low belowground biomass allocation and high storage utilization combined with poor photosynthetic growth caused extirpation of the plant population by the defoliating insects. Stable coexistence of the plant at low biomass along with its specialist insect required a moderate amount of post-herbivory belowground allocation. High values of belowground biomass allocation, storage utilization, and photosynthetic growth resulted in sustained cycles of the herbivore and plant populations. Interestingly, utilization of stored reserves had conflicting influence on above and belowground biomass, and strongly affected herbivore population dynamics. Our model thus highlights the complexity of tolerance response when it involves multiple traits and mechanisms as evinced by winter deciduous plants. We close by discussing the implications of our findings for the contributions of defoliating insects to biocontrol programs.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号