首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Free [ADP] and aerobic muscle work follow at least second order kinetics in rat gastrocnemius in vivo
Authors:Cieslar J H  Dobson G P
Institution:Department of Physiology and Pharmacology, Schools of Biomolecular and Molecular Sciences, James Cook University, Townsville, Queensland 4811, Australia.
Abstract:The relationship between free cytosolic ADP] (and P(i)]) and steady-state aerobic muscle work in rat gastrocnemius muscle in vivo using (31)P NMR was investigated. Anesthetized rats were ventilated and placed in a custom-built cradle fitted with a force transducer that could be placed into a 7-tesla NMR magnet. Muscle work was induced by supramaximal sciatic nerve stimulation that activated all fibers. Muscles were stimulated at 0.1, 0.2, 0.3, 0.4, 0.5, 0.8, 1.0, and 2.0 Hz until twitch force, phosphocreatine, and P(i) were unchanged between two consecutive spectra acquired in 4-min blocks (8-12 min). Parallel bench experiments were performed to measure total tissue glycogen, lactate, total creatine, and pyruvate in freeze-clamped muscles after 10 min of stimulation at each frequency. Up to 0.5 Hz, there was no significant change in muscle glycogen, lactate, and the lactate/pyruvate ratios between 8-12 min. At 0.8 Hz, there was a 17% fall in glycogen and a 65% rise in the muscle lactate with a concomitant fall in pH. Above this frequency, glycogen fell rapidly, lactate continued to rise, and ATP and pH declined. On the basis of these force and metabolic measurements, we estimated the maximal mitochondrial capacity (V(max)) to be 0.8 Hz. Free ADP] was then calculated at each submaximal workload from measuring all the reactants of the creatine kinase equilibrium after adjusting the K'(CK) to the muscle temp (30 degrees C), pH, and pMg. We show that ADP (and P(i)) and tension-time integral follow a Hill relationship with at least a second order function. The K(0.5) values for free ADP] and P(i)] were 48 microM and 9 mM, respectively. Our data did not fit any form of the Michaelis-Menten equation. We therefore conclude that free cytosolic ADP] and P(i)] could potentially control steady-state oxidative phosphorylation in skeletal muscle in vivo.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号