首页 | 本学科首页   官方微博 | 高级检索  
     


Mammalian ALKBH8 Possesses tRNA Methyltransferase Activity Required for the Biogenesis of Multiple Wobble Uridine Modifications Implicated in Translational Decoding
Authors:Lene Songe-M?ller  Erwin van den Born  Vibeke Leihne  Cathrine B. V?gb?   Terese Kristoffersen  Hans E. Krokan  Finn Kirpekar  P?l ?. Falnes  Arne Klungland
Abstract:Uridines in the wobble position of tRNA are almost invariably modified. Modifications can increase the efficiency of codon reading, but they also prevent mistranslation by limiting wobbling. In mammals, several tRNAs have 5-methoxycarbonylmethyluridine (mcm5U) or derivatives thereof in the wobble position. Through analysis of tRNA from Alkbh8−/− mice, we show here that ALKBH8 is a tRNA methyltransferase required for the final step in the biogenesis of mcm5U. We also demonstrate that the interaction of ALKBH8 with a small accessory protein, TRM112, is required to form a functional tRNA methyltransferase. Furthermore, prior ALKBH8-mediated methylation is a prerequisite for the thiolation and 2′-O-ribose methylation that form 5-methoxycarbonylmethyl-2-thiouridine (mcm5s2U) and 5-methoxycarbonylmethyl-2′-O-methyluridine (mcm5Um), respectively. Despite the complete loss of all of these uridine modifications, Alkbh8−/− mice appear normal. However, the selenocysteine-specific tRNA (tRNASec) is aberrantly modified in the Alkbh8−/− mice, and for the selenoprotein Gpx1, we indeed observed reduced recoding of the UGA stop codon to selenocysteine.tRNAs are frequently modified at the wobble uridine, a feature that is believed to either promote or restrict wobbling depending on the type of modification. In the case of eukaryotes, the functions of wobble uridine modifications have been studied in the greatest detail in Saccharomyces cerevisiae. Here, the modifications 5-methoxycarbonylmethyluridine (mcm5U), 5-methoxycarbonylmethyl-2-thiouridine (mcm5s2U), and 5-carbamoylmethyluridine (ncm5U) or its 2′-O-ribose-methylated form, ncm5Um, are found in 11 out of 13 wobble uridine-containing tRNAs (22). mcm5U and mcm5s2U are mostly found in “split” codon boxes, where the pyrimidine- and purine-ending codons encode different amino acids, while ncm5U is found in “family” codon boxes, where all four codons encode a single amino acid. Early reports based on in vitro experiments suggested that wobble nucleosides, such as mcm5U, ncm5U, and their derivatives, may restrict wobbling (17, 37, 45), but the results of a recent comprehensive study performed in vivo in S. cerevisiae show that such modifications can improve the reading both of the cognate, A-ending codons and of the wobble, G-ending codons (22). This may suggest that the primary role of these modified nucleosides is to improve translational efficiency rather than to restrict wobbling.The characterization of wobble uridine modifications in higher eukaryotes is very limited, and little is known about the enzymes that introduce them. In mammals, mcm5s2U has been found in the wobble position of tRNAGlu(UUC), tRNALys(UUU), and tRNAArg(UCU) (40). Unlike yeast, mammals possess a specialized tRNA that is responsible for recoding the UGA stop codon to insert the 21st amino acid, selenocysteine (Sec). The mammalian tRNASec population consists of two subpopulations containing either mcm5U or the ribose-methylated derivative mcm5Um in the wobble position. Interestingly, ribose methylation of mcm5U in tRNASec appears to have a role in regulating selenoprotein synthesis, as the expression of some selenoproteins, such as glutathione peroxidase 1 (Gpx1), appears to be promoted by mcm5Um-containing tRNASec (5, 7, 9, 32).Some years ago, the Escherichia coli AlkB protein was found to be a 2-oxoglutarate- and iron-dependent dioxygenase capable of demethylating the lesions 1-methyladenosine and 3-methylcytosine in DNA (13, 42). Multicellular organisms generally possess several different AlkB homologues (ALKBH), and bioinformatics analysis has identified eight different mammalian ALKBH proteins, denoted ALKBH1 to ALKBH8 in humans and Alkbh1 to Alkbh8 in mice, as well as the somewhat-less-related, obesity-associated FTO protein (2, 16, 30). Among the ALKBH proteins of unknown function, ALKBH8 is the only one containing additional annotated protein domains. Here, the AlkB domain is localized between an N-terminal RNA recognition motif (RRM) and a C-terminal methyltransferase (MT) domain. Interestingly, the MT domain has sequence homology to the S. cerevisiae tRNA methyltransferase Trm9, which has been shown to catalyze the methyl esterification of modified wobble uridine (U34) residues of tRNAArg and tRNAGlu, resulting in the formation of mcm5U and mcm5s2U, respectively (23, 43). Until recently, human ALKBH8 was incorrectly annotated in the protein sequence database, and another human protein, KIAA1456, has been designated the human Trm9 homologue (3, 23).We have generated for this study Alkbh8-targeted mice that lack exons critical for both the MT and AlkB activities of Alkbh8. The mice did not display any overt phenotype, but tRNA from these mice was completely devoid of mcm5U, mcm5s2U, and mcm5Um, and the relevant tRNA isoacceptors instead contained the acid form 5-carboxymethyluridine (cm5U) and/or the amide forms ncm5U/ncm5s2U. Furthermore, we show that recombinant ALKBH8 and TRM112 form a heterodimeric complex capable of catalyzing the methyl esterification of cm5U and cm5s2U to mcm5U and mcm5s2U, respectively. In agreement with the involvement of mcm5Um in selenoprotein synthesis, we observed a reduced level of Gpx1 in the Alkbh8−/− mice, and tRNASec from these mice showed a reduced ability to decode the UGA stop codon to Sec.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号