首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Detection, sizing, and quantitation of polyadenylated ribonucleic acid in the nanogram-picogram range
Authors:S Tracy  D E Kohne
Abstract:A method is described for using very high specific activity 3H]poly(deoxythymidylate) 3H]poly(dT)] to detect, size, and quantiate subnanogram amounts of nonradioactive polyadenylated RNA. Short (approximately 100 nucleotides long) 3H]poly(dT) is hybridized to the poly(adenylate) poly(A)] tracts in polyadenylated RNAs. The RNA may then be sized and quantitated by sucrose gradient analysis. The addition of the small 3H]poly(dT) molecules does not significantly alter the s values of RNAs. The amount of 3H]poly(dT) hybridized to polyadenylated RNA increases linearly with the amount of RNA. A room temperature hydroxylapatite (HA) method has also been developed to detect and quantitate poly(A)-containing RNA after hybridization to radioactive poly(dT). S-1 nuclease (S-1) analysis can also be used to measure the poly(A) content of polyadenylated RNA to less than nanogram RNA amounts. For both the S-1 and HA approaches, the amount of 3H]poly(dT) hybridized increases with the amount of RNA and the methods can detect to as little as 10(-12) g of polyadenylated RNA with 3H]poly(dT). Greater sensitivity is possible with higher specific activity poly(dT). The approaches presented here significantly extend the uses of radioactive homopolymers to detect, quantitate, and characterize RNAs containing complementary homopolymer tracts.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号