首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Differential protein phosphorylation-dephosphorylation in response to carbon source in Ruminococcus flavefaciens FD-1
Authors:Vercoe P E  Kocherginskaya S A  White B A
Institution:Department of Animal Sciences, University of Illinois at Urbana-Champaign, 1207 West Gregory Drive, Urbana, IL 61801, USA.
Abstract:AIMS: The aims of this study were to study the effect of cellobiose or cellulose as a carbon source on the differential protein phosphorylation-dephosphorylation of cytoplasmic and membrane-associated proteins from Ruminococcus flavefaciens FD-1. METHODS AND RESULTS: SDS-PAGE analysis was used to compare in vitro labelled proteins (32P-ATP) isolated from R. flavefaciens FD-1 grown on either cellobiose or cellulose as the carbon source. Distinctly different protein phosphorylation patterns were detected depending on carbon source and cell fraction. Analysis of the nature of the phosphorylated proteins indicates that phosphorylated proteins from cellobiose grown cultures are phosphorylated on serine residues, whereas phosphorylated proteins from cellulose grown cultures are phosphorylated on threonine residues. CONCLUSIONS: The results of this comparative analysis show a shift from serine phosphorylation of proteins to a threonine phosphorylation when R. flavefaciens FD-1 cells are grown on cellulose as opposed to cellobiose. There appears to be a role for these phosphorylation events in sensing the carbon source for growth and regulating co-ordinated metabolism in R. flavefaciens FD-1. SIGNIFICANCE AND IMPACT OF THE STUDY: We have demonstrated that there is a protein phosphorylation system in R. flavefaciens FD-1 that may be the primary sensing system for carbon source by R. flavefaciens FD-1 and the further regulation of gene expression related to cellulose degradation.
Keywords:cellulase  gene expression  protein phosphorylation              Ruminococcus flavefaciens
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号