首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Target ranging and the role of time-frequency structure of synthetic echoes in big brown bats,Eptesicus fuscus
Authors:Annemarie Surlykke
Institution:(1) Biologisk Institut, Odense Universitet, DK-5230 Odense M, Danmark
Abstract:Summary Echolocating bats judge the distance to a target on basis of the delay between the emitted cry and the returning echo. In a phantom echo set-up it was investigated how changes in the time-frequency structure of synthetic echoes affect ranging accuracy of big brown bats, Eptesicus fuscus.A one channel phantom target simulator and a Y/N paradigm was used. Five Eptesicus fuscus were trained to discriminate between phantom targets with different virtual distances (delays). The phantom echo was stored in a memory and broadcast from a loudspeaker after a certain delay following the bat's triggering of the system via a trigger microphone. The ranging accuracy was compared using 5 different signals with equal energy as phantom echoes: a standard cry (a natural bat cry), two kinds of noise signals, a high pass, and a low pass filtered version of the standard cry.The standard cry was recorded from one of the bats while judging the distance to a real target. The duration was 1.1 ms, the first harmonic swept down from 55 to 25 kHz and there was energy also in the second and third harmonic. Both noise signals had the same duration, power spectrum, and energy as the standard cry. One noise signal was stored in a memory and hence was exactly the same each time the bat triggered the system. The other variable noise signal was produced by storing the envelope of the standard cry and multiplying on-line with band pass filtered noise. The time-frequency structure (e.g. rise time) of this noise signal changed from triggering to triggering. The filtered signals were produced by either 40 kHz high pass or 40 kHz low pass filtering of the standard cry.The range difference thresholds for the 5 bats were around 1–2 cm (51–119 us) using the standard cry as echo. The range difference threshold with both noise signals was 7–8 cm (around 450 mgrs delay difference). The 40 kHz high pass filtered cry increased the threshold to approximately twice the threshold with the standard cry. With the 40 kHz low pass filtered cry the threshold was increased 2.5–3 times relative to the threshold with the standard cry. A single bat was tested with a signal filtered with a 55 kHz low pass filter leaving the whole first harmonic. The threshold was the same as that with the standard signal.The reduced ranging accuracy with the filtered signals indicates that the full band width of the first harmonic is utilised for ranging by the bats. The substantial reduction in accuracy with the noise signals indicates that not only the full band width but also the orderly time-frequency structure (the FM sweep) of the cry is important for ranging in echolocating bats.Abbreviations FM frequency modulated - CF constant frequency - peSPL peak equivalent sound pressure level - SD standard deviation - SE standard error of mean - EPROM erasable programmable read only memory - FFT fast Fourier transform - S/N signal-to-noise ratio
Keywords:Bat  Sonar  Fm Sweep  Ranging
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号