首页 | 本学科首页   官方微博 | 高级检索  
     


Conformational Analysis of Isolated Domains of Helicobacter pylori CagA
Authors:Amanda P. Woon  Abolghasem Tohidpour  Hernan Alonso  Yumiko Saijo-Hamano  Terry Kwok  Anna Roujeinikova
Affiliation:1. Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia.; 2. Department of Microbiology, Monash University, Clayton, Victoria, Australia.; 3. Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan.; Veterans Affairs Medical Center (111D), United States of America,
Abstract:The CagA protein of Helicobacter pylori is associated with increased virulence and gastric cancer risk. CagA is translocated into the host cell by a H. pylori type IV secretion system via mechanisms that are poorly understood. Translocated CagA interacts with numerous host factors, altering a variety of host signalling pathways. The recently determined crystal structure of C-terminally-truncated CagA indicated the presence of two domains: the smaller, flexible N-terminal domain and the larger, middle domain. In this study, we have investigated the conformation, oligomeric state and stability of the N-terminal, middle and glutamate-proline-isoleucine-tyrosine-alanine (EPIYA)-repeats domains. All three domains are monomeric, suggesting that the multimerisation of CagA observed in infected cells is likely to be mediated not by CagA itself but by its interacting partners. The middle and the C-terminal domains, but not the N-terminal domain, are capable of refolding spontaneously upon heat denaturation, lending support to the hypothesis that unfolded CagA is threaded C-terminus first through the type IV secretion channel with its N-terminal domain, which likely requires interactions with other domains to refold, being threaded last. Our findings also revealed that the C-terminal EPIYA-repeats domain of CagA exists in an intrinsically disordered premolten globule state with regions in PPII conformation - a feature that is shared by many scaffold proteins that bind multiple protein components of signalling pathways. Taken together, these results provide a deeper understanding of the physicochemical properties of CagA that underpin its complex cellular and oncogenic functions.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号