首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The Role of the Methyltransferase Domain of Bifunctional Restriction Enzyme RM.BpuSI in Cleavage Activity
Authors:Arthur Sarrade-Loucheur  Shuang-yong Xu  Siu-Hong Chan
Institution:New England Biolabs, Inc., Ipswich, Massachusetts, United States of America.; Universität Stuttgart, Germany,
Abstract:Restriction enzyme (REase) RM.BpuSI can be described as a Type IIS/C/G REase for its cleavage site outside of the recognition sequence (Type IIS), bifunctional polypeptide possessing both methyltransferase (MTase) and endonuclease activities (Type IIC) and endonuclease activity stimulated by S-adenosyl-L-methionine (SAM) (Type IIG). The stimulatory effect of SAM on cleavage activity presents a major paradox: a co-factor of the MTase activity that renders the substrate unsusceptible to cleavage enhances the cleavage activity. Here we show that the RM.BpuSI MTase activity modifies both cleavage substrate and product only when they are unmethylated. The MTase activity is, however, much lower than that of M1.BpuSI and is thought not to be the major MTase for host DNA protection. SAM and sinefungin (SIN) increase the Vmax of the RM.BpuSI cleavage activity with a proportional change in Km, suggesting the presence of an energetically more favorable pathway is taken. We further showed that RM.BpuSI undergoes substantial conformational changes in the presence of Ca2+, SIN, cleavage substrate and/or product. Distinct conformers are inferred as the pre-cleavage/cleavage state (in the presence of Ca2+, substrate or both) and MTase state (in the presence of SIN and substrate, SIN and product or product alone). Interestingly, RM.BpuSI adopts a unique conformation when only SIN is present. This SIN-bound state is inferred as a branch point for cleavage and MTase activity and an intermediate to an energetically favorable pathway for cleavage, probably through increasing the binding affinity of the substrate to the enzyme under cleavage conditions. Mutation of a SAM-binding residue resulted in altered conformational changes in the presence of substrate or Ca2+ and eliminated cleavage activity. The present study underscores the role of the MTase domain as facilitator of efficient cleavage activity for RM.BpuSI.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号