Prevalences of Shiga Toxin Subtypes and Selected Other Virulence Factors among Shiga-Toxigenic Escherichia coli Strains Isolated from Fresh Produce |
| |
Authors: | Peter C. H. Feng Shanker Reddy |
| |
Affiliation: | Division of Microbiology, U.S. FDA, College Park, Maryland, USAa;Monitoring Programs Division, USDA, Manassas, Virginia, USAb |
| |
Abstract: | Shiga-toxigenic Escherichia coli (STEC) strains were isolated from a variety of fresh produce, but mostly from spinach, with an estimated prevalence rate of 0.5%. A panel of 132 produce STEC strains were characterized for the presence of virulence and putative virulence factor genes and for Shiga toxin subtypes. About 9% of the isolates were found to have the eae gene, which encodes the intimin binding protein, and most of these belonged to known pathogenic STEC serotypes, such as O157:H7 and O26:H11, or to serotypes that reportedly have caused human illness. Among the eae-negative strains, there were three O113:H21 strains and one O91:H21 strain, which historically have been implicated in illness and therefore may be of concern as well. The ehxA gene, which encodes enterohemolysin, was found in ∼60% of the isolates, and the saa and subAB genes, which encode STEC agglutinating adhesin and subtilase cytotoxin, respectively, were found in ∼30% of the isolates. However, the precise roles of these three putative virulence factors in STEC pathogenesis have not yet been fully established. The stx1a and stx2a subtypes were present in 22% and 56%, respectively, of the strains overall and were the most common subtypes among produce STEC strains. The stx2d subtype was the second most common subtype (28% overall), followed by stx2c (7.5%), and only 2 to 3% of the produce STEC strains had the stx2e and stx2g subtypes. Almost half of the produce STEC strains had only partial serotypes or were untyped, and most of those that were identified belonged to unremarkable serotypes. Considering the uncertainties of some of these Stx subtypes and putative virulence factors in causing human illness, it is difficult to determine the health risk of many of these produce STEC strains. |
| |
Keywords: | |
|
|