首页 | 本学科首页   官方微博 | 高级检索  
     


Solid state self-assembly mechanism of RADA16-I designer peptide
Authors:Cormier Ashley R  Ruiz-Orta Carolina  Alamo Rufina G  Paravastu Anant K
Affiliation:Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida 32310-6046, United States.
Abstract:We report that synthetic RADA16-I peptide transforms to β-strand secondary structure and develops intermolecular organization into β-sheets when stored in the solid state at room temperature. Secondary structural changes were probed using solid state nuclear magnetic resonance spectroscopy (ssNMR) and Fourier transform infrared spectroscopy (FTIR). Intermolecular organization was analyzed via wide-angle X-ray diffraction (WAXD). Observed changes in molecular structure and organization occurred on the time scale of weeks during sample storage at room temperature. We observed structural changes on faster time scales by heating samples above room temperature or by addition of water. Analysis of hydration effects indicates that water can enhance the ability of the peptide to convert to β-strand secondary structure and assemble into β-sheets. However, temperature dependent FTIR and time dependent WAXD data indicate that bound water may hinder the assembly of β-strands into β-sheets. We suggest that secondary structural transformation and intermolecular organization together produce a water-insoluble state. These results reveal insights into the role of water in self-assembly of polypeptides with hydrophilic side chains, and have implications on future optimization of RADA16-I nanofiber production.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号