首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Functional reconstitution and characterization of the Arabidopsis Mg(2+) transporter AtMRS2-10 in proteoliposomes
Authors:Ishijima Sumio  Shigemi Zenpei  Adachi Hiroaki  Makinouchi Nana  Sagami Ikuko
Abstract:Magnesium (Mg(2+)) plays critical role in many physiological processes. The mechanism of Mg(2+) transport has been well documented in bacteria; however, less is known about Mg(2+) transporters in eukaryotes. The AtMRS2 family, which consists of 10 Arabidopsis genes, belongs to a eukaryotic subset of the CorA superfamily proteins. Proteins in this superfamily have been identified by a universally conserved GlyMetAsn motif and have been characterized as Mg(2+) transporters. Some members of the AtMRS2 family, including AtMRS2-10, may complement bacterial mutants or yeast mutants that lack Mg(2+) transport capabilities. Here, we report the purification and functional reconstitution of AtMRS2-10 into liposomes. AtMRS2-10, which contains an N-terminal His-tag, was expressed in Escherichia coli and solubilized with sarcosyl. The purified AtMRS2-10 protein was reconstituted into liposomes. AtMRS2-10 was inserted into liposomes in a unidirectional orientation. Direct measurement of Mg(2+) uptake into proteoliposomes revealed that reconstituted AtMRS2-10 transported Mg(2+) without any accessory proteins. Mutation in the GMN motif, M400 to I, inactivated Mg(2+) uptake. The AtMRS2-10-mediated Mg(2+) influx was blocked by Co(III)hexamine, and was independent of the external pH from 5 to 9. The activity of AtMRS2-10 was inhibited by Co(2+) and Ni(2+); however, it was not inhibited by Ca(2+), Fe(2+), or Fe(3+). While these results indicate that AtMRS2-10 has similar properties to the bacterial CorA proteins, unlike bacterial CorA proteins, AtMRS2-10 was potently inhibited by Al(3+). These studies demonstrate the functional capability of the AtMRS2 proteins in proteoliposomes to study structure-function relationships.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号