首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Helix-dipole effects in peptide self-assembly to amyloid
Authors:Liu Gai  Robbins Kevin J  Sparks Samuel  Selmani Veli  Bilides Kalin M  Gomes Erin E  Lazo Noel D
Institution:Carlson School of Chemistry and Biochemistry, Clark University, 950 Main Street, Worcester, MA 01610, USA.
Abstract:The formation of amyloid fibrils is associated with incurable diseases including Alzheimer's, Parkinson's, and type 2 diabetes. Important mechanistic details of the self-assembly are unknown partly because of the absence of a clear structural characterization of intermediates. There is experimental evidence, however, for α-helical intermediates that has come primarily from circular dichroism spectroscopy. Here, we strengthen the evidence for helical intermediates by demonstrating helix-dipole effects in the early events of self-assembly. Previously, we showed that capped peptides containing the part of the islet amyloid polypeptide that may be responsible for the initial intermolecular contacts (Acetyl-R(11)LANFLVHSSNNFGA(25)-NH(2) and Acetyl-R(11)LANFLVHSGNNFGA(25)-NH(2) which contains the S20G mutation associated with early onset type 2 diabetes) self-assemble via helical intermediates Liu et al. (2010) J. Am. Chem. Soc.132, 18223-18232]. We demonstrate here that when the peptides are uncapped, they do not self-assemble as indicated primarily by circular dichroism and nuclear magnetic resonance data. Self-assembly is restored when the charge on α-NH(3)(+) of Arg11 is eliminated but not when the charge on α-COO(-) of Ala25 is removed, consistent with the helicity of the peptides skewed toward the N-terminus. Our results strengthen the hypothesis that α-helical intermediates are on pathway to amyloid formation and indicate that the helix dipole is an attractive target for inhibiting the formation of α-helical assemblies.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号