Inhibition of the RhoA/Rho kinase system attenuates catecholamine biosynthesis in PC 12 rat pheochromocytoma cells |
| |
Authors: | Fukuda Toshiyuki Takekoshi Kazuhiro Nanmoku Toru Ishii Kiyoaki Isobe Kazumasa Kawakami Yasushi |
| |
Affiliation: | Department of Clinical Pathology, Institute of Clinical Medicine, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8575, Japan. |
| |
Abstract: | The small GTPase, RhoA, and its downstream effecter Rho-kinase (ROK) are reported to be involved in various cellular functions, such as myosin light chain phosphorylation during smooth muscle contraction and exocytosis. Indeed, growing evidence suggests that the RhoA/Rho-kinase pathway plays an important role in regulating exocytosis in these cells. However, it is not known whether the RhoA/Rho-kinase pathway has an effect on catecholamine synthesis. Using the rat pheochromocytoma cell line, PC12, we examined the effects of either Rho-kinase inhibitor (Y27632) or RhoA inhibitor (C3 toxin) on nicotine-induced catecholamine biosynthesis. We show that nicotine (10 microM) induces a significant, though transient, increase in RhoA activation in these cells. Treatment with either Y27632 (1 microM) or C3 toxin (10 microg/ml) significantly inhibited the nicotine-induced increase of tyrosine hydroxylase (TH) mRNA and the corresponding enzyme activity. TH catalyzes the rate-limiting step in the biosynthesis of catecholamine. Y27632 significantly inhibited nicotine-induced phosphorylation of TH at Ser40 as well as Ser19, which are known to be phosphorylated by Ca(2+)/calmodulin kinase II. Furthermore, Y27632 (10 microM) as well as C3 toxin (10 microg/ml) significantly inhibited the nicotine-induced increase of TH at the protein level. Thus, we propose that activation of RhoA, and its downstream effecter Rho-kinase, is a prerequisite for catecholamine biosynthesis in PC12 cells. At the concentrations used in our experiments, Y27632 does not affect cAMP/PKA activity or PKC activity, indicating that the inhibitory effect of Y27632 can be attributed to the inhibition of Rho-kinase activity as observed in chromaffin cells. In contrast, neither Y27632 (10 microM) nor C3 toxin (10 microg/ml) significantly altered catecholamine secretion in PC12 cells. In conclusion, we have demonstrated that inhibition of the Rho/Rho-kinase pathway in chromaffin cells lowers TH activity, probably through CaMKII inhibition. By contrast, neither Y27632 nor C3 toxin affect the secretion of catecholamine. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|