首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Enhanced tolerances of transgenic tobacco plants expressing both superoxide dismutase and ascorbate peroxidase in chloroplasts against methyl viologen-mediated oxidative stress
Authors:S YKwon  Y JJeong  H SLee  J SKim  K YCho  R DAllen  & S SKwak
Institution:Plant Cell Biotechnology Laboratory, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Oun-dong 52, Yusong, Taejon 305-333, Korea,;Agrochemical Screening Team, Korea Research Institute of Chemical Technology (KRICT), PO Box 107, Yusong, Taejon 305-600, Korea and;Departments of Biological Sciences and Plant and Soil Sciences, Texas Tech University, Lubbock, TX 79409-3131, USA
Abstract:In order to better understand the role of antioxidant enzymes in plant stress protection mechanisms, transgenic tobacco (Nicotiana tabacum cv. Xanthi) plants were developed that overexpress both superoxide dismutase (SOD) and ascorbate peroxidase (APX) in chloroplasts. These plants were evaluated for protection against methyl viologen (MV, paraquat)‐mediated oxidative damage both in leaf discs and whole plants. Transgenic plants that express either chloroplast‐targeted CuZnSOD (C) or MnSOD (M) and APX (A) were developed (referred to as CA plants and AM plants, respectively). These plant lines were crossed to produce plants that express all three transgenes (CMA plants and AMC plants). These plants had higher total APX and SOD activities than non‐transgenic (NT) plants and exhibit novel APX and SOD isoenzymes not detected in NT plants. As expected, transgenic plants that expressed single SODs showed levels of protection from MV that were only slightly improved compared to NT plants. The expression of either SOD isoform along with APX led to increased protection while expression of both SODs and APX provided the highest levels of protection against membrane damage in leaf discs and visual symptoms in whole plants.
Keywords:Nicotiana tabacum tobacco  antioxidant enzyme  leaf disc  membrane damage  stress tolerance  whole plant
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号