首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Biglycan,a nitric oxide-regulated gene,affects adhesion,growth, and survival of mesangial cells
Authors:Schaefer Liliana  Beck Karl-Friedrich  Raslik Igor  Walpen Sebastian  Mihalik Daniel  Micegova Miroslava  Macakova Katarina  Schonherr Elke  Seidler Daniela G  Varga Georg  Schaefer Roland M  Kresse Hans  Pfeilschifter Josef
Institution:Department of Medicine D, Albert-Schweitzer-Str. 33, University of Münster, 48149 Münster, Germany. schaefl@unimuenster.de
Abstract:During glomerular inflammation mesangial cells are the major source and target of nitric oxide that pro-foundly influences proliferation, adhesion, and death of mesangial cells. The effect of nitric oxide on the mRNA expression pattern of cultured rat mesangial cells was therefore investigated by RNA-arbitrarily-primed polymerase chain reaction. Employing this approach, biglycan expression turned out to be down-regulated time- and dose-dependently either by interleukin-1beta-stimulated endogenous nitric oxide production or by direct application of the exogenous nitric oxide donor, diethylenetriamine nitric oxide. There was a corresponding decline in the rate of biglycan biosynthesis and in the steady state level of this proteoglycan. In vivo, in a model of mesangioproliferative glomerulonephritis up-regulation of inducible nitric-oxide synthase mRNA was associated with reduced expression of biglycan in isolated glomeruli. Biglycan expression could be normalized, both in vitro and in vivo, by using a specific inhibitor of the inducible nitric-oxide synthase, l-N6-(l-iminoethyl)-l-lysine dihydrochloride. Further studies showed that biglycan inhibited cell adhesion on type I collagen and fibronectin because of its binding to these substrates. More importantly, biglycan protected mesangial cells from apoptosis by decreasing caspase-3 activity, and it counteracted the proliferative effects of platelet-derived growth factor-BB. These findings indicate a signaling role of biglycan and describe a novel pathomechanism by which nitric oxide modulates the course of renal glomerular disease through regulation of biglycan expression.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号