首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Acetylated alpha-tubulin in microtubules during mouse fertilization and early development
Authors:G Schatten  C Simerly  D J Asai  E Sz?ke  P Cooke  H Schatten
Institution:Integrated Microscopy Resource for Biomedical Research, University of Wisconsin, Madison 53706.
Abstract:alpha-Tubulin in the microtubules of mouse oocytes and embryos is acetylated in a specific spatial and temporal sequence. In the unfertilized oocyte, a monoclonal antibody to the acetylated form of alpha-tubulin is bound predominantly at the poles of the arrested metaphase meiotic spindle. The labeling intensity of the spindle microtubules is weaker as observed by immunofluorescence using oocytes double-labeled for total tubulin and acetylated alpha-tubulin, and as measured by immuno high-voltage electron microscopy (immunoHVEM) with colloidal gold; cytasters are not acetylated. At meiotic anaphase, the spindle becomes labeled, and by telophase and during second polar body formation only the meiotic midbody is acetylated. The sperm axoneme retains its acetylation after incorporation though the interphase microtubules are not detected. First mitosis follows a pattern similar to that observed at the second meiosis and during interphase only the mitotic midbodies are acetylated. After treatment with cold, colcemid, or griseofulvin, the remaining stable microtubules are acetylated, but immunoHVEM observations suggest that these fibers might not have been acetylated prior to microtubule disruption. Taxol stabilization does not alter acetylation patterns. Acetylated microtubules are not necessarily old microtubules since acetylated fibers are observed at 30 sec after cold recovery. These results show the presence of acetylated microtubules during meiosis and mitosis and demonstrate a cell-cycle-specific pattern of acetylation, with acetylated microtubules found at the centrosomes at metaphase, an increase in spindle labeling at anaphase, and the selective deacetylation of all but midbody microtubules at telophase.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号