首页 | 本学科首页   官方微博 | 高级检索  
   检索      


N-acetylcysteine and taurine prevent hyperglycemia-induced insulin resistance in vivo: possible role of oxidative stress
Authors:Haber C Andrew  Lam Tony K T  Yu Zhiwen  Gupta Neehar  Goh Tracy  Bogdanovic Elena  Giacca Adria  Fantus I George
Institution:Department of Medicine, Mount Sinai Hospital, 60 Murray Street, Toronto, Ontario, Canada M5G 1X5.
Abstract:Exposure to high concentrations of glucose and insulin results in insulin resistance of metabolic target tissues, a characteristic feature of type 2 diabetes. High glucose has also been associated with oxidative stress, and increased levels of reactive oxygen species have been proposed to cause insulin resistance. To determine whether oxidative stress contributes to insulin resistance induced by hyperglycemia in vivo, nondiabetic rats were infused with glucose for 6 h to maintain a circulating glucose concentration of 15 mM with and without coinfusion of the antioxidant N-acetylcysteine (NAC), followed by a 2-h hyperinsulinemic-euglycemic clamp. High glucose (HG) induced a significant decrease in insulin-stimulated glucose uptake tracer-determined disappearance rate (Rd), control 41.2 +/- 1.7 vs. HG 32.4 +/- 1.9 mg. kg-1. min-1, P < 0.05], which was prevented by NAC (HG + NAC 45.9 +/- 3.5 mg. kg-1. min-1). Similar results were obtained with the antioxidant taurine. Neither NAC nor taurine alone altered Rd. HG caused a significant (5-fold) increase in soleus muscle protein carbonyl content, a marker of oxidative stress that was blocked by NAC, as well as elevated levels of malondialdehyde and 4-hydroxynonenal, markers of lipid peroxidation, which were reduced by taurine. In contrast to findings after long-term hyperglycemia, there was no membrane translocation of novel isoforms of protein kinase C in skeletal muscle after 6 h. These data support the concept that oxidative stress contributes to the pathogenesis of hyperglycemia-induced insulin resistance.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号