首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Possible involvement of the A20-A21 peptide bond in the expression of the biological activity of insulin. 3. [21-Desasparagine,20-cysteine ethylamide-A]insulin and [21-desasparagine,20-cysteine 2,2,2-trifluoroethylamide-A]insulin
Authors:Y C Chu  R Y Wang  G T Burke  J D Chanley  P G Katsoyannis
Institution:Department of Biochemistry, Mount Sinai School of Medicine of the City University of New York, New York 10029.
Abstract:We have synthesized 21-desasparagine,20-cysteine ethylamide-A]insulin and 21-desasparagine,20-cysteine 2,2,2-trifluoroethylamide-A]insulin, which differ from natural insulin in that the C-terminal amino residue of the A chain, asparagine, has been removed and the resulting free carboxyl group of the A20 cysteine residue has been converted to an ethylamide and a trifluoroethylamide group, respectively. 21-Desasparagine,20-cysteine ethylamide-A]insulin displayed equivalent potency in receptor binding and biological activity, ca. 12% and ca. 14%, respectively, relative to bovine insulin. In contrast, 21-desasparagine,20-cysteine 2,2,2-trifluoroethylamide-A]insulin displayed a divergence in these properties, ca. 13% in receptor binding and ca. 6% in biological activity. This disparity is ascribed to a difference in the electronic state of the A20-A21 amide bond in these two analogues. A model is proposed to account for the observation of divergence between receptor binding and biological activity in a number of synthetic insulin analogues and naturally occurring insulins. In this model, changes in the electronic state and/or the orientation of the A20-A21 amide bond can modulate biological activity independently of receptor binding affinity. The A20-A21 amide bond is thus considered as an important element in the "message region" of insulin.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号