首页 | 本学科首页   官方微博 | 高级检索  
     


Epidermal growth factor-induced hydrolysis of phosphatidylcholine by phospholipase D and phospholipase C in human dermal fibroblasts
Authors:G J Fisher  P A Henderson  J J Voorhees  J J Baldassare
Affiliation:Department of Dermatology, University of Michigan Medical Center, Ann Arbor.
Abstract:The enzymatic pathways for formation of 1,2-diradylglyceride in response to epidermal growth factor in human dermal fibroblasts have been investigated. 1,2-Diradylglyceride mass was elevated 2-fold within one minute of addition of EGF. Maximal accumulation (4-fold) occurred at 5 minutes. Since both diacyl and ether-linked diglyceride species occur naturally and may accumulate following agonist activation, we developed a novel method to determine separately the alterations in diacyl and ether-linked diglycerides following stimulation of fibroblasts with EGF. Utilizing this method, it was found that approximately 80% of the total cellular 1,2-diradylglyceride was diacyl, the remaining 20% being ether-linked. Addition of EGF caused accumulation of 1,2-diacylglyceride without alteration in the level of ether-linked diglyceride. Thus, the observed induction of 1,2-diradylglyceride by EGF was due exclusively to increased formation of 1,2-diacylglyceride. In cells labelled with [3H]choline, the water soluble phosphatidylcholine hydrolysis products, phosphorylcholine and choline, were increased 2-fold within 5 minutes of addition of EGF. No hydrolysis of phosphatidylethanolamine, phosphatidylserine, or phosphatidylinositol was observed. Quantitation by radiolabel and mass revealed equivalent elevations in phosphorylcholine and choline, suggesting stimulation of both phospholipase C and phospholipase D activities. To identify the presence of EGF-induced phospholipase D activity, cells were labelled with exogenous [3H]1-0-hexadecyl, 2-acyl phosphatidylcholine and its conversion to phosphatidic acid in response to EGF determined. Radiolabelled phosphatidic acid was detectable in 15 seconds after addition of EGF and was maximal (3-fold) at 30 seconds. Consistent with the presence of EGF-induced phospholipase D activity, treatment of cells with EGF, in the presence of [14C]ethanol, resulted in the rapid formation of [14C]phosphatidylethanol, the product of phospholipase D-catalyzed transphosphatidylation. The formation of phosphatidylethanol, which competes for the formation of phosphatidic acid by phospholipase D, did not diminish the induction of 1,2-diglyceride by EGF. These data suggest that the phosphatidic acid formed by phospholipase D-catalyzed hydrolysis of phosphatidylcholine is not a major precursor of the observed increased 1,2-diglyceride. Thus, the induction of 1,2-diacylglycerol by EGF may occur primarily via phospholipase C-catalyzed hydrolysis of phosphatidylcholine.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号